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ABSTRACT

A stochastic mapping approach under the MMSE criterion based on
stereo features is investigated in this paper for noise robust speech
recognition. By learning the mapping from a joint GMM distribution
of clean and noisy features, the MMSE estimate of the clean feature
is shown to be a piece-wise linear transformation of the noisy fea-
ture. The mathematical relationship between the proposed MMSE
mapping and other piece-wise linear estimates for noise robustness
(i.e. MAP mapping and SPLICE) is also analyzed and discussed.
Experimental results show that the proposed MMSE-based stochas-
tic mapping yields superior performance over the MAP mapping
on DARPA Transtac large vocabulary spontaneous speech test sets
when using clean and multi-style acoustic models.

Index Terms— speech recognition, noise robust, MMSE, stereo
feature, stochastic mapping.

1. INTRODUCTION

Noise robustness is crucial when a speech recognition system is
deployed in real-world applications. In recent years, the IBM mul-
tilingual real-time automatic speech-to-speech translation system
[17[2][3] has been targeting its deployment in military conditions
through the DARPA Transtac project. The automatic speech recog-
nition component in the speech-to-speech translation system is
demanded to be robust to the environment, especially with military
noise, to carry the conversation through. Therefore, accomplishing
noise robust speech recognition is a fundamental and important issue
to the success of the translation system in this scenario.

Stereo data are widely used in achieving noise robustness in
speech recognition [4][5][6][7][8][9]. The approaches of using
stereo data are able to learn the statistical relationship between clean
and noisy speech signals directly from the data for denoising, requir-
ing no model between clean and noisy speech signals. The earliest
research was initiated in [4] where the SNR-Dependent Cepstral
Normalization (SDCN) and Codeword-Dependent Cepstral Normal-
ization (CDCN) were proposed for noise robust speech recognition
based on stereo data that were recorded simultaneously from two
channels. In [6] and [7], the Stereo-based Piecewise Linear Com-
pensation for Environments (SPLICE) algorithm was investigated
and obtained impressive performance on the Aurora 2 database.
Recently, an iterative MAP-based stochastic mapping approach uti-
lizing stereo data was studied in [9] where a GMM distribution is
assumed for the joint stereo features and the estimation of the clean
feature from the noisy feature was carried out iteratively by the EM
algorithm in the GMM framework.

In this paper, we follow the same assumption as [9] in model-
ing the joint distribution of the stereo features as a GMM. From the
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information-theoretic perspective, this joint distribution contains all
the information between the clean and noisy features. Given the es-
timated GMM and noisy feature, an MMSE estimate of the clean
feature is derived which can be shown as a piece-wise linear func-
tion. Since a number of GMM based estimations can result in piece-
wise linear estimates, it is insightful to investigate the mathematical
relationships among the estimates derived from distinctive optimiza-
tion criteria. In this paper, we analyze the connection of the piece-
wise linear functions among the proposed MMSE mapping, MAP
mapping and SPLICE estimates in [9] and [6], respectively. The
MMSE based estimation offers a computational advantage over its
MAP counterpart because it requires no EM iterations and no ma-
trix inversion during run-time. In addition, it offers improved per-
formance in our experimental evaluation. We also show that one
iteration of the MAP estimate approximately equals to (differ by a
posterior probability) the MMSE under a special tying of the param-
eters. This can partially explain the improved performance of the
MMSE estimate in the experiments.

The remainder of the paper is organized as follows. In Section 2,
we give the mathematical derivation of the MMSE-based stochastic
mapping in the GMM framework of the joint stereo features. In
Section 3, we discuss the theoretical relationship among the MMSE,
MAP and SPLICE estimates. Experimental results are presented in
Section 4 and summary and conclusions are provided in Section 5.

2. MATHEMATICAL FORMULATION

Denote a set of stereo feature as {(z;,y:)}, where z is the clean
speech feature vector and y is the corresponding noisy speech fea-
ture vector. In the most general case, y; can be L, noisy vectors
used to predict L. clean vectors in x;. Define z = (z, y) as the con-
catenation of the two channels. A GMM of the joint distribution is
shown in Eq.1 and trained from stereo features

K
p(z) = ZCkN(Z§NZ,k7EZZ,k) (1
k=1

where K is the number of mixture components, ¢k, ft- x, and X, x,
are the mixture weight, mean, and covariance of each component,
respectively. Both the mean and covariance can be partitioned as
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where subscripts x and y indicate the clean and noisy speech features
respectively.
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Given the observed noisy speech feature y, the MMSE estimate
of clean speech z is given by

& = Elzly] “

Since p(z,y) is a GMM, Eq.4 can be further written as
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The posterior probability term p(k|y) in Eq.5 can be computed as
p(k,y)
plkly) = ==
(ly) p(y)
p(ylk)p(k) ©)
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The expectation term E[z |k, y] in Eq.5 can be computed as
= Hzk +Zzy,k2;yl,k(y—:uy-,k) Q)

From Eq.5 and Eq.7, it is obvious that the MMSE estimate of
x is a piece-wise linear function of the noisy feature y, as we can
re-write Eq.5 in the following form

&= plkly)(Aey + bs) ®)
k
where
A = Syl ©)]
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In other words, this MMSE-based stochastic mapping is a
weighted summation of linear functions contributed by each Gaus-
sian component k from the joint GMM distribution p(z,y). The
weight is the posterior probability p(k|y) and the linear function
comes naturally as a result of joint Gaussian distribution of each
component.

3. COMPARATIVE DISCUSSION

Similar to the proposed MMSE estimate, there are a few other
GMM-based techniques for noise robust speech recognition which
lead to piece-wise linear functions too, e.g. the SPLICE estimate
in [6] and the MAP estimate in [9]. It would be interesting to
investigate the relationship between them.

3.1. MMSE vs. SPLICE

In [6], the estimate of clean feature & is obtained as

&= p(kly)(y +ri) (11
k

where the bias term 7, of each component is trained upon stereo data
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compared to Egs. 8, 9 and 10, we have several observations. First,
SPLICE builds GMM on noisy features while in this paper GMM
is built on the joint clean and noisy features (Eq.1). Consequently,
the posterior probability p(k|y) in Eq.11 is computed from the noisy
feature distribution while p(k|y) in Eq.8 is computed from the joint
distribution. Second, SPLICE assumes the transformation matrix
Ay, is an identity matrix, which is a special case of the MMSE when
Yayk = Myy.k- If a perfect correlation is assumed between the
clean feature x,, and noisy feature y,, then p(k|z,) and p(k|y» ) are
approximately identical from the joint GMM distribution p(x, 3). In
this case, Eq.12 can be written as

(12)
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These are Ay, and by, in the MMSE estimate in Eqs. 9 and 10 when
Yok = Zyyk-

3.2. MMSE vs. MAP

In [9], a stochastic mapping is estimated under the MAP criterion

7 = argmax p(z|y) (14)

which results in an iterative piece-wise linear estimate of the clean
feature

&1 =" p(kla" Y, y) (Ary + bi) (15)
k

where (=1 is the estimate of z from previous iteration and
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By comparing the MAP piece-wise linear estimate in Egs. 15, 16
and 17 with that of the MMSE estimate in Egs. 8, 9 and 10, one can
easily observe the difference between the two estimates. First, the
posterior probability in the MAP estimate is p(k|&" =1, ), which is
computed against the joint Gaussian distribution p(z, y); the poste-
rior probability in the MMSE estimate is p(k|y), which is computed
against the marginal noisy distribution p(y) from the joint distribu-
tion p(z,y). Second, there is an extra term
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in the MAP estimate which is the inversion of the weighted summa-
tion of conditional covariance matrices from each individual Gaus-
sian component. This term is the only matrix inversion needed at
run-time, otherwise can be computed and saved off-line. It is worth
noting that the MMSE estimate has the advantage over the MAP
estimate from the computational perspective since it needs no EM
iterations and requires no run-time matrix inversion in Eq.18. If we
assume the conditional covariance matrix X, , in Eq.18 is constant
across k, i.e. all Gaussians in the GMM share the same conditional

covariance matrix ¥, , the Eq.18 turns to
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Accordingly, Eqgs.16 and 17 can be written as

A = By S ek S = Sk, (20)
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which are literally Eqs. 9 and 10 of the MMSE estimate, respec-
tively. The assumption of 3,  being constant across k can be re-
alized by tying the covariance matrices when estimating joint GMM
distribution. This tying can effectively result in more robust esti-
mates of the conditional covariances and can partially explain the
superior results obtained using MMSE in the experiments.

4. EXPERIMENTAL RESULTS

Experiments are performed on large vocabulary spontaneous speech
recognition system. Both clean and multi-style (MST) acoustic mod-
els are trained and tested. There are in total about 120 hours of clean
data in the training set. In the clean acoustic model case, the clean
acoustic model is trained on clean data. During decoding, the input
speech is compensated and decoded by the clean acoustic model.
In the MST model case, 15dB and 10dB noisy data are generated
by adding humvee, tank and babble noise to the clean data. These
three types of noise are chosen to match the military deployment en-
vironments in the DARPA Transtac Project. In the MST training,
SNR-specific mappings are trained on 15dB and 10dB data sepa-
rately by stacking the clean speech with the noisy speech. After
the mappings are obtained, they are applied back to the noisy train-
ing data to yield noise-compensated speech data which are used for
multi-style training. In decoding, one mapping is selected for the
given environment (SNR) by a GMM-based environment classifier,
which will be detailed later, and applied to compensate the incom-
ing speech signal which is eventually decoded by the MST acoustic
model. This is in the same spirit of using speaker-adaptive training
(SAT) scheme, where some adaptation or compensation method is
used in both training and decoding.

4079

The feature space of the acoustic models is formed as follows.
First, 24 dimensional Mel-frequency cepstrum coefficients (MFCC)
including energy are calculated. The MFCC features are then mean
and energy normalized. 9 vectors are stacked leading to a 216-
dimensional parameter space. The feature space is finally reduced
to 40 dimensions using a combination of linear discriminant analy-
sis (LDA), and maximum likelihood linear transformation (MLLT).
This 40-dimensional space is the final space for both training and
decoding.

The acoustic model uses Gaussian mixture models associated to
the leaves of a decision tree. The tree clustering is done by asking
questions about phoneme context. The phoneme inventory has 54
phonemes for American English, and each phoneme is represented
by 3 states. After aligning feature vectors to leaves, the GMMs for
the leaves are first initialized, and then they are refined by running
four iterations of the Forward-Backward algorithm. Rank distribu-
tions for each leaf are calculated using the resulting Gaussian mix-
ture models. These discrete rank distributions are used to calculate
acoustic scores in the decoding stage. The search uses a stack de-
coder which employs the rank distributions and trigram language
models to find the most likely spoken utterance. The vocabulary has
30K words. The clean acoustic model in the experiments has 43K
Gaussians and the MST models have 55K Gaussians.

In terms of noise compensation, a GMM with 1024 Gaussian
components is estimated for (clean,15dB) and (clean,10dB) stereo
features respectively. In the experiments, we assume the covariance
matrices are diagonal. Therefore, the stochastic mapping is scalar
and the mapping is performed dimension by dimension. During de-
coding, a GMM-based environment classifier is built for the detec-
tion of clean, 15dB and 10dB SNR environments. In this environ-
ment classifier, a GMM with 4 mixture of Gaussians is estimated for
each environment using the first 10 frames of the utterances from that
environment in the training data. Before decoding, the likelihood of
the first 10 frames of the input utterances is computed against each
GMM. The environment with the maximum likelihood is chosen as
the environment of the input utterance and the mapping of that en-
vironment, i.e. clean, 15dB or 10dB, is applied to compensate the
utterance.

In [9], the MAP mapping has been shown to obtain superior
performance than SPLICE on the Bell-labs CARVUI database. In
this paper, we focus on the performance comparison between the
proposed MMSE mapping and the MAP mapping in [9]. In the fol-
lowing tables, MAP and MMSE denote the algorithm. SSM24 and
SSM40 stand for the feature space to which the mapping is applied -
24 dimensional cepstral space in SSM24 and 40 dimensional space
after MLLT in SSM40. The number of EM iterations of the MAP
mapping is represented as “liter” and “3iter” for one and three iter-
ations, respectively.

The experiments are carried out on two test sets both of which
are collected in the DARPA Transtac project. The first test set (Set
A) has 11 male speakers and 2070 utterances in total recorded in the
clean condition. The utterances are spontaneous speech which are
corrupted artificially by adding humvee, tank and babble noise to
produce 15dB and 10dB noisy test data. Table 1 shows the word er-
ror rate of the proposed MMSE mapping when being applied to the
24 dimensional cepstral space and the 40 dimensional MLLT space.
Clearly, MMSE mapping in the MLLT space yields better perfor-
mance which makes sense since the MLLT space is the final feature
space where the acoustic models are estimated. This is also consis-
tent with what was observed on MAP mapping in [9]. Therefore, in
later experiments, the mappings are compared in the 40 dimensional
MLLT space.



| Condition | Clean [ 15dB | 10dB |
| no compensation || 15.96 | 31.97 | 40.72 |

MMSE-SSM24 14.84 | 31.21 | 40.58
MMSE-SSM40 14.70 | 28.74 | 35.47

Table 1. Word error rate (WER) with clean acoustic model on Set A
when applying MMSE mapping to different domains.

Tables 2 and 3 compare the performance between the MMSE
and MAP mappings with clean and MST acoustic models. From
the Table 2 with clean acoustic model, the MAP mapping with 3
iterations obtains better performance than 1 iteration and the MMSE
mapping gives better performance than the MAP with 3 iterations.
‘When multi-style training is performed, both MAP MST and MMSE
MST yield significant better performance compared to MST without
noise compensation in 15dB and 10dB. MAP and MMSE deliver
comparable WER in this test set with multi-style training. Since
the MST model has more training data than the clean model, it has
more Gaussians (i.e. 55K vs. 43K). That is the reason for the better
performance of the MST model than that of the clean model in the
clean condition without compensation in the tables.

Condition | Clean | 15dB [ 10dB
| nocompensation || 15.96 | 31.97 | 40.72

MAP-SSM40-liter || 14.77 | 30.63 | 39.23
MAP-SSM40-3iter || 14.77 | 30.54 | 39.12
MMSE-SSM40 14.70 | 28.74 | 35.47

Table 2. Word error rate (WER) with clean acoustic model on Set A
using MAP and MMSE mappings.

Condition [ Clean [ 15dB [ 10dB |
| nocompensation || 10.48 | 20.16 | 27.15 |

MAP-SSM40-liter || 11.31 | 16.63 | 20.09
MAP-SSM40-3iter || 10.96 | 17.10 | 20.58
MMSE-SSM40 11.25 | 16.94 | 20.24

Table 3. Word error rate (WER) with MST model on Set A using
MAP and MMSE mappings.

The MAP and MMSE mappings are evaluated on another test
set (Set B) in Table 4 which has 7 male speakers with 203 utterances
from each. The utterances were recorded in the real-world environ-
ment with humvee and tank noise running in the background. This is
a very noisy evaluation set and utterance SNRs are measured around
5dB to 8dB. In this real-world noisy test set, the MMSE mapping
achieves 18% relative WER reduction compared to the MAP map-
pings in the clean model scenario. It also yields around 5% WER
reduction when multi-style training is employed.

5. SUMMARY AND CONCLUSIONS

In this paper we investigated an MMSE-based stereo feature stochas-
tic mapping approach for noise compensation. The MMSE mapping,
which is estimated based on the GMM joint distribution of the stereo
features, is shown to be a piece-wise linear function. We discussed
the mathematical connections between the proposed MMSE map-
ping and other piece-wise linear algorithms known in noise robust
speech recognition, i.e. SPLICE and MAP mapping.
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| model | clean model | MST model ]

| nocompensation || 59.07 | 5858 |
MAP-SSM40-1iter 56.48 44.67
MAP-SSM40-3iter 56.33 45.46
MMSE-SSM40 46.19 43.02

Table 4. Word error rate (WER) with clean and MST model on Set
B using MAP and MMSE mapping.

We conducted experiments on two spontaneous speech test
sets to compare the performance of the proposed MMSE mapping
to the MAP mapping. From the computational standpoint, the
MMSE mapping is advantageous over the MAP mapping since it
needs no EM iterations and requires no run-time matrix inversion.
Performance-wise, the MMSE mapping scheme also yields superior
results when decoding with both clean acoustic model and multi-
style trained acoustic model. Especially in the real-world noisy
evaluation set, the MMSE mapping scheme yielded significantly
better performance.
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