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ABSTRACT

It is well known that automatic speech recognition performs poorly

in presence of noise or reverberation. Much research has been under-

taken on model adaptation and speech enhancement to increase the

robustness of speech recognizers. Model adaptation is effective to

remove static mismatch between speech features and acoustic model

parameters, but may not cope well with dynamic mismatch. Speech

enhancement approaches can reduce dynamic perturbations, but of-

ten do not interconnect well with speech recognizer. There seems to

be a lack of optimal way to combine these two approaches. In this

paper we propose introducing the dynamic capabilities of speech en-

hancement into a static adaptation scheme. We focus on variance

adaptation, and propose a novel parametric variance model that in-

cludes static and dynamic components. The dynamic component is

derived from a speech enhancement pre-process, and the parame-

ters of the model are optimized using an adaptive training scheme.

An evaluation of the method with a speech dereverberation for pre-

processing revealed that a 80 % relative error rate reduction was pos-

sible compared with the recognition of dereverberated speech, and

the final error rate was 5.4 % which is close to that of clean speech

(1.2%).

Index Terms— Robust ASR, Variance compensation, Model

adaptation, Dereverberation

1. INTRODUCTION

It is well known that the performance of Automatic Speech Recog-

nition (ASR) is severely degraded when attempts are made to rec-

ognize speech in the presence of noise and/or reverberation. The

problem arises from a mismatch between the clean speech data used

for training the ASR system and the noisy observed data used for

testing. Solving this problem remains one of the main challenges of

ASR research. Conventionally there are two approaches for reduc-

ing the mismatch between the training and test conditions, namely

model based approaches and feature based approaches.

Model based approaches consist of modifying the acoustic model

parameters to fit better with the observed speech features [1] [2] [3].

For example, adaptive training, such as Maximum Likelihood Lin-

ear Regression (MLLR) [1], estimates a new acoustic model using

the clean speech model and observed speech features. The model

adaptation relies on likelihood maximization, which assures a re-

duction in the mismatch. Adaptive training is effective in removing

static mismatch caused for example by speaker variations. However,

it may not cope well with any mismatch arising for example from

non-stationary noise or reverberation.

Feature based approaches consist of estimating clean speech fea-

tures using the observed speech. For example, speech enhancement

methods can be used as a pre-process to ASR [4] [5]. Many speech

enhancement algorithms can efficiently reduce non-stationary noise.

However, remaining noise or the excessive removal of noise may

introduce distortions that prevent high recognition performance.

Recently, there have been several proposals suggesting the use of

information on feature reliability to improve the ASR performance

of speech enhancement pre-process [6] [7]. The idea consists of

focusing during decoding on reliable feature components. As an

example, dynamic variance compensation proposes increasing the

model variance for unreliable feature components by adding the vari-

ance of enhanced feature. In [6], substantial ASR improvement has

been reported when accurate feature variance could be obtained as

in an Oracle experiment. However, with estimated feature variance,

the performance was much poorer than that obtained with Oracle.

There have been several proposals as regards estimating the variance

of enhanced feature [6] [7], but the methods are usually dependent

on the speech enhancement pre-process and therefore lack general-

ity. For example, in [6] feature variance is derived from a speech

enhancement method based on a Gaussian mixture model of clean

speech. The generality of the feature variance calculation could be

increased by approximating it with, for example, the estimated ob-

served noise (given by the distance between enhanced features and

observed noisy features). However, the estimated variance may be

far from the Oracle variance (i.e. the distance between clean and

enhanced speech features) and therefore, high levels of performance

may not be obtained.

In this paper, we aim at interconnecting a speech enhancement

pre-processor with a speech recognizer by simultaneously realizing

good performance and generality. To this end, we propose introduc-

ing a dynamic variance compensation scheme into a static adaptive

training framework. We design a novel parametric model for the

feature variance that includes static and dynamic components. The

dynamic component can be derived from the speech enhancement

pre-processor output as the estimated observed noise. This calcula-

tion can be performed for any pre-processor, thus assuring the gen-

erality of the proposed method. The parameters of the feature vari-

ance model are optimized using an adaptive training approach and

therefore may approach better Oracle feature variance. Moreover,

the proposed variance adaptation method could be combined with

conventional mean adaptation techniques such as MLLR to further

reduce the mismatch.

The organization of the paper is as follows. In Section 2, we

introduce some notations and review the principles of dynamic vari-

ance compensation. In section 3, we introduce the parametric model

of feature variance and show how the parameters can be estimated

using an adaptive training scheme. In section 4, we show simulation

results we obtained when using the proposed method in combination
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with a speech dereverberation pre-processor. Finally, we conclude

the paper and discuss some future research directions.

2. DYNAMIC VARIANCE COMPENSATION

2.1. Notations

Recognition is usually achieved by finding a word sequence, W , that

maximizes a likelihood function as:

W = arg max
W

p(X|W )p(W ), (1)

where X = [x1, ..., xT ] is a sequence of speech features and p(W )
is a language model. Speech is modeled using a Hidden Markov

Model (HMM) with state density modeled by a Gaussian Mixture

(GM):

p(xt|n) =
MX

m=1

p(m)p(xt|m) =
MX

m=1

p(m)N(xt; μn,m, Σn,m),

(2)

where n is the state index, m is the Gaussian mixture component in-

dex, M is the number of Gaussian mixtures, and μn,m and Σn,m are

a mean vector and a covariance matrix respectively. In the following,

we consider diagonal covariance matrices and denote the diagonal

elements of Σn,m by σ2
n,m,i, where i is the feature dimension index.

The parameters of the acoustic model are trained with clean speech

data.

In practice, speech features used for recognition x̂t may differ

from clean speech features used for training, xt, because of noise,

reverberation or distortions induced by speech enhancement pre-

processing. In this paper, we focus on the latter case. Let us model

the mismatch, bt, between clean speech feature xt and enhanced

speech feature x̂t as:

x̂t = xt + bt, (3)

where bt is modeled by a Gaussian as:

p(bt) = N(bt; 0,Σx̂t), (4)

and Σx̂t represents the feature variance, or uncertainty, which may

be time-varying.

2.2. Principles

Recently, a new ASR decoding rule has been proposed to account for

the mismatch between the acoustic model and the speech feature [6].

The likelihood of a speech feature given a state n, can be obtained

by marginalizing the joint probability over mismatch bt as [6]:

p(xt|n)=

Z +∞

−∞

p(xt, bt|n)dbt =

Z +∞

−∞

p(xt|bt, n)p(bt|n)dbt

=

MX

m=1

p(m)N(x̂t; μn,m,Σn,m + Σx̂t), (5)

where they assumed the mismatch to be state independent, i.e.

p(bt|n) ≈ p(bt). It is shown in [6] that dynamic variance compen-

sation is very effective, especially when Oracle feature variance is

used. In practice, such an accurate feature variance estimation may

not be available, and therefore the performance of dynamic variance

compensation is not optimal. Here, in an effort to improve the per-

formance of variance compensation, we propose a novel parametric

model for the feature variance, and a procedure for estimating the

model parameters using adaptive training.

3. PROPOSED METHOD FOR VARIANCE CALCULATION

3.1. Parametric model of feature variance

In theory, feature variance should be computed as the squared dif-

ference between clean and pre-processed speech features. However,

this calculation may not be possible because clean speech features

are unknown. Here we assume that the feature variance is propor-

tional to the estimated observed noise, i.e. the squared difference

between observed noisy and pre-processed speech features. Intu-

itively, this means that speech enhancement introduces more distor-

tions when a great amount of noise is removed. One way to model

feature variance is thus:

(Σx̂t(α, λ))i,j=δi,j

`
αi(ut,i − x̂t,i)

2 + λiσ
2
n,m,i

´

,δi,jσ
2
x̂t,i, (6)

where δi,j is the Kronecker symbol, ut is the observed noisy speech

feature and αi and λi are model parameters.

This model contains a dynamic variance part, αi(ut,i − x̂t,i)
2,

and a static bias, λiσ
2
n,m,i. We make the bias state dependent and

proportional to the model variance σ2
n,m,i [2]. The parameters αi

and λi can be optimized by using adaptive training. Note that if

αi = 0 the model is equivalent to that of conventional static variance

compensation [2] and if αi is constant and λi = 0 it is equivalent

to the model of conventional dynamic variance compensation [6].

The proposed model enables us to combine both static and dynamic

variance compensation within an adaptive training framework.

It is important to note that the proposed method can be further

combined with mean adaptation techniques such as MLLR [1], in

order to further reduce the gap between model and speech features.

3.2. Adaptation of variance model parameters

The model variance parameters, θ = (α, λ), can be obtained by

maximizing the likelihood as:

(θ, W ) = arg max
θ,W

p(X|W, θ)p(W ). (7)

For simplicity, we consider supervised adaptation, where the word

sequence W is known. The maximum likelihood estimation problem

can be solved using the Expectation Maximization (EM) algorithm.

We define an auxiliary function Q(θ|θ′) as:

Q(θ|θ′) =
X

S

X

C

ZZ

X+B=X̂

p(X, B, S, C|Ψ, θ
′)

log(p(X, B, S, C|Ψ, θ))dXdB

∝

TX

t=1

NX

n=1

MX

m=1

ZZ

X+B=X̂

p(X, B, n, m|Ψ, θ
′)

log(p(bt|θ))dXdB, (8)

where B is a mismatch feature sequence, S is a set of all possi-

ble state sequences, C is a set of all mixture components, N is the

number of states, and Ψ represents the acoustic model parameters.

The auxiliary function of Eq.(8) is similar to that used for stochastic

matching [2]. The difference arises from the model of the mismatch

given by Eq.(6) that includes a dynamic part. θ should be obtained

by maximizing Eq.(8). However, there is no closed form solution for

the joint estimation of (α, λ). Therefore, we consider the three fol-

lowing cases, α = 0 (i.e. static Variance Adaptation (SVA)), λ = 0
(dynamic Variance Adaptation (DVA)) and a combination of the two

(static and dynamic Variance Adaptation (SDVA)).
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3.2.1. Static Variance Adaptation (SVA, α = 0)

If α = 0, the problem is reduced to conventional static model vari-

ance adaptation as proposed in [2] and sometimes referred to as vari-

ance scaling. The scaling factor λi can be calculated using the EM

algorithm as:

λi =

PT

t=1

PN

n=1

PM

m=1 γt(n, m)
(x̂t,i−μn,m,i)

2

σ2

n,m,iPT

t=1

PN

n=1

PM

m=1 γt(n, m)
− 1, (9)

where γt(n, m) is the state occupancy probability, which can be ob-

tained using the forward-backward algorithm. From Eq. (9) we can

interpret λi as the average of the ratio between the enhanced feature

variance and the model variance.

3.2.2. Dynamic Variance Adaptation (DVA, λ = 0)

When λ = 0, we can find a close form solution to the maximization

problem.1 By inserting Eqs.(6) and (4) in Eq.(8) and maximizing

with respect to αi, we find the following expression:

αi =

PT

t=1

PN

n=1

PM

m=1 γt(n, m)
E{b2t,i|x̂t,n,m,Ψ,α′}

(ut,i−x̂t,i)2PT

t=1

PN

n=1

PM

m=1 γt(n, m)
, (10)

where

E{bt,i|x̂t, n, m, Ψ, α
′}=

σ2
x̂t,i

σ2
x̂t,i + σ2

n,m,i

(x̂t,i − μn,m,i), (11)

E{b2
t,i|x̂t, n, m, Ψ, α

′}=
σ2

x̂t,iσ
2
n,m,i

σ2
x̂t,i + σ2

n,m,i

+ E{bt,i|x̂t, n, m, Ψ, α
′}2.

(12)

Equations (11) and (12) follow from similar derivations as those in

[8]. Note that αi can be interpreted as the average of the ratio be-

tween the mismatch variance, i.e. (x̂t,i−xt,i)
2, and estimated noise

variance (ut,i − x̂t,i)
2.

3.2.3. Static and Dynamic Variance Adaptation (SDVA)

It may not be easy to find a close form solution of the EM algorithm

when the feature variance is modeled as in Eq.(6). However, we saw

that solutions could be found if we considered the maximization rel-

ative to α and λ separately. As these two maximization problems

involve the same likelihood function, the likelihood would also in-

crease if we perform maximization relatively to each parameter in

turn. Here we propose first removing the static bias by perform-

ing static variance adaptation as described in section 3.2.1. Then,

using the previously adapted acoustic model, we perform dynamic

variance adaptation as shown in section 3.2.2. This procedure may

approach the general case when the variance is modeled as in Eq.(6).

4. EXPERIMENTS

Reverberation is a good example of dynamic mismatch that is chal-

lenging for conventional static model adaptation techniques. There-

fore, here we test the proposed method with speech dereverberation

for pre-processing.

1For simplicity we considered λ = 0, although similar results could be
obtained for λ = const.

4.1. Dereverberation method

For pre-processing, we use the blind speech dereverberation recently

proposed in [5]. The method first estimates late reverberation by

using multi-step forward linear prediction. Dereverberation is then

achieved by subtracting the estimated late reverberation from the ob-

served reverberant signal, using conventional spectral subtraction.

The method has been shown to remove a large amount of reverbera-

tion when using multiple microphones, but the performance deterio-

rates when using only one microphone. Here we investigate the use

of variance compensation to improve the performance in the most

challenging single microphone case.

4.2. Experimental settings

To test the proposed method, we used the SOLON recognizer [9]

modified to account for the decoding rule of Eq.(5). The recog-

nition task consisted of continuous digit utterances. The acoustic

model consisted of speaker independent word based HMMs with 16

states and 3 Gaussians per state. The HMMs were trained using

clean speech drawn from the TI-Digit database. The sampling rate

was 8 kHz. The acoustic features consisted of 39 coefficients: 12

MFCCs, 0th cepstrum coefficient, delta and acceleration. Cepstral

mean normalization (CMN) was applied to the features. We gen-

erated reverberant speech by convolving clean speech with a room

impulse response. The impulse response was measured in a room

with a reverberation time of around 0.5 sec., and a distance between

the speaker and the microphones of 1.5 m. The clean speech utter-

ances were obtained from the TI-Digit clean test set. The test set

consists of 561 utterances spoken by 104 male and female speakers.

The average duration of the utterances is around 6 sec.

We measure the ASR performance using the Word Error Rate

(WER). Table 1 gives the baseline recognition results for clean speech,

reverberant speech and dereverberated speech. We observed severe

degradation induced by reverberation. Only a small error reduc-

tion was achieved when using single channel dereverberation. We

also show the result obtained using variance compensation with vari-

ance given by the estimated observed noise (without adaptation, i.e.

α = 1, λ = 0) and with ideal variance (Oracle). Variance compen-

sation reduces the error especially with Oracle variance, in which

case the WER is very close to that of clean speech. Our objective is

to approach Oracle performance.

Clean 1.2 %

Reverberant 32.7 %

Dereverberated 31 %

Variance Compensation (without adaptation) 15.9 %

Oracle 3.3 %

Table 1. Baseline ASR results.

4.3. Results of variance adaptation

We use speaker independent adaptation data to adapt the model to

the speech enhanced data without performing speaker adaptation.

The adaptation data consists of 520 utterances spoken by the same

female and male speakers as the test set. To test the influence of

the number of adaptation data, we used subsets of adaptation data

containing from 2 to 512 utterances extracted randomly from the

520 adaptation utterances. Figure 1 plots the WER as a function of

the number of adaptation utterances for SVA, DVA and SDVA. The

results are averaged over 5 randomly generated adaptation data sets.

We observe that in all cases, convergence is almost achieved af-

ter 2 utterances. A great reduction in the WER from 31% to 15.2% is
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Fig. 1. WER as a function of the number of adaptation data for SVA

(thin solid line), DVA (dash-dotted line) and SDVA (thick solid line)

achieved using SVA. DVA achieved similarly good results although

they were slightly worse than SVA. In contrast, when using SDVA

the performance improved by an additional 2%. These results show

that even though there remains a gap compared with the clean speech

case or Oracle results shown in Table 1, the proposed method could

significantly improve the ASR performance by reducing the error by

56% compared with the recognition of dereverberated speech. This

experiment proves the effectiveness of combining static and dynamic

variance adaptation.

4.4. Results of variance adaptation combined with MLLR for

mean adaptation

Here we investigate the use of feature variance adaptation with mean

adaptation using global MLLR with full transformation matrix. Fig-

ure 2 plots WER as a function of the number of utterances when

using only MLLR (mean), SVA + MLLR (mean), DVA + MLLR

(mean), and SDVA + MLLR (mean). Note that SVA + MLLR (mean)

is somewhat similar to conventional mean and variance MLLR [1].

With only MLLR, WER converges to around 17%. By combining

SVA with MLLR WER is reduced to up to 11%. Using DVA +

MLLR can reduce WER further to 8%. Finally, SDVA + MLLR

converges to a WER close to 5% which corresponds to more than

80 % relative error rate reduction compared with the recognition of

dereverberated speech. This WER is pretty close to that of clean

speech. This experiment proves the effectiveness of combining the

proposed method with mean adaptation.

Note that with MLLR, SVA + MLLR and DVA + MLLR, more

than 16 utterances may be needed to converge. When SDVA is used,

better performance is achieved at the cost of more adaptation data

(here more than 128 utterances). When using SDVA + MLLR, we

obtain poorer results when too few utterances are used. The problem

may arise from instabilities that occur when performing the EM al-

gorithm in turns. One way to solve this problem may be to perform

the variance update and mean update in the same step of the EM

algorithm. Future work will include an investigation of this matter.

5. CONCLUSION

We investigated the use of variance adaptation to improve the ASR

performance of speech pre-processed with a speech enhancement

method. We proposed a novel method for calculating the feature

variance, which involves a parametric model whose parameters are

estimated using adaptive training. By combining static and dynamic

adaptation, we designed a general and high performance way of in-

terconnecting a speech enhancement pre-processor and a speech rec-

ognizer. We tested the method with a blind dereverberation algo-
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Fig. 2. WER as a function of the number of adaptation data for

MLLR (dotted line), SVA + MLLR (thin solid line), DVA + MLLR

(dash-dotted line) and SDVA + MLLR (thick solid line)

rithm for pre-processing. We showed that variance adaptation was

very effective in reducing the WER, especially when we combined

both static and dynamic adaptation. We also demonstrated that the

proposed method could be combined with conventional mean adap-

tation methods such as MLLR. In which case the ASR performance

was comparable to that of clean speech. Future work will include

investigations on a cluster based adaptation method designed to im-

prove estimation of the feature variance model parameters as well as

testing the proposed method with other speech enhancement meth-

ods and on larger vocabulary tasks.
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