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ABSTRACT 
 

In this paper, we present a new approach to HMM adaptation 
that jointly compensates for additive and convolutive acoustic 
distortion in environment-robust speech recognition. The hallmark 
of our new approach is the use of a nonlinear, phase-sensitive 
model of acoustic distortion that captures phase asynchrony 
between clean speech and the mixing noise. In the first step of the 
developed algorithm, both the static and dynamic portions of the 
noise and channel parameters are estimated in the cepstral domain, 
using the speech recognizer’s “feedback” information and the 
vector-Taylor-series linearization technique on the nonlinear 
phase-sensitive model. In the second step, the estimated noise and 
channel parameters are used to effectively adapt the static and 
dynamic portions of the HMM means and variances also using the 
linearized phase-sensitive acoustic distortion model.  
       In the experimental evaluation using the standard Aurora 2 
task, the proposed new algorithm achieves 93.3% accuracy using 
the clean-trained complex HMM backend as the baseline system 
for unsupervised HMM adaptation. This reaches the highest 
performance number in the literature on this task with clean-
trained HMM model. The experimental results show that the phase 
term, which was missing in all previous HMM-adaptation work, 
contributes significantly to the achieved high recognition accuracy.  
 

Index Terms— phase-sensitive distortion model, vector 
Taylor series, additive and convolutive distortions, robust ASR 

1. INTRODUCTION 

Despite many years of research and investment, environment 
robustness in speech recognition remains an outstanding and 
difficult problem. In recent years, a popular approach to joint 
compensation of additive and convolutive distortions (JAC) in the 
model domain has been proposed and advanced [1][2][3][4][5], 
with promising results obtained. Common among these studies is 
the use of a parsimonious nonlinear “physical” model for 
environment distortion and the use of vector Taylor series (VTS) 
approximation to linearize or “Gaussianize” the model for closed-
form HMM adaptation formulas and for noise/channel parameter 
estimation.  

In all the previous JAC/VTS work for HMM adaptation, the 
environment-distortion model makes the simplifying assumption of 
instantaneous phase synchrony (phase-insensitive) between the 
clean speech and the mixing noise. This assumption was relaxed in 
the work reported in [6], where a new phase term was introduced 

to account for the random nature of the phase asynchrony. And it 
was shown in [6] that when the noise magnitude is estimated 
accurately, the Gaussian-distributed phase term plays a key role in 
recovering clean speech features by removing the noise and the 
cross term between the noise and speech. 

However, in contrast to the JAC/VTS approach that implements 
robustness in the model (HMM) domain, the approach of [6] was 
implemented in the feature domain (i.e., feature enhancement 
instead of HMM adaptation), producing inferior recognition results 
than the model-domain approach despite the use of a more accurate 
environment-distortion model (phase-sensitive versus phase-
insensitive models). 

The research presented in this paper extends and integrates our 
earlier two sets of work: HMM adaptation with the phase-
insensitive environment-distortion model (JAC/VTS [4][5]) and 
feature enhancement with the phase-sensitive environment-
distortion model [6]. The new algorithm developed and presented 
in this paper implements environment robustness via HMM 
adaptation taking into account phase asynchrony between clean 
speech and the mixing noise. That is, it incorporates the same 
phase term in [6] into the rigorous formulation of JAC/VTS of [5]. 
We hence name our new algorithm as Phase-JAC/VTS. 

The rest of the paper is organized as follows. In Section 2, we 
present the new Phase-JAC/VTS algorithm and its implementation 
steps. Experimental evaluation of the algorithm is provided in 
Section 3. We show that the new algorithm can achieve remarkably 
high (>93%) recognition accuracy averaged over all distortion 
conditions on the Aurora 2 task with the standard complex back-
end, clean-trained model and standard MFCCs. We summarize our 
study and draw conclusions in Section 4. 

2. PHASE-JAC/VTS ADAPTATION ALGORITHM  

In this section, we first derive the Phase-JAC/VTS formulas for the 
HMM means and variances in the MFCC (both static and dynamic) 
domain using VTS approximation assuming that the estimates of 
the additive and convolutive parameters are known. We then give 
the algorithm which jointly estimates the additive and convolutive 
distortion parameters based on the same VTS approximation. A 
summary description follows on the detailed implementation steps 
of the entire algorithm which were used in our experiments.  

2.1 Algorithm for HMM Adaptation Given the Joint 
Noise and Channel Estimates  
Figure 1 shows a model for degraded speech with both noise 
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(additive) and channel (convolutive) distortions. The observed 
distorted speech signal y[m] is generated from clean speech x[m] 
with noise n[m] and channel’s impulse response h[m] according to 

y[m] = x[m]*h[m] + n[m].  (1) 
With discrete Fourier transformation (DFT), the following 

equivalent relations can be established in the frequency domain:  
Y[k] = X[k] H[k] + N[k],  (2) 

where k is the frequency-bin index in DFT given a fixed-length 
time window. 

  
Figure 1: A model for acoustic environment distortion 

 
The power spectrum of the distorted speech can then be 

obtained as: 

k|H[k]||N[k]|X[k]| |N[k]| H[k]||X[k]| |Y[k]| θcos|2| 2222 ++= ,(3) 

where kθ denotes the (random) angle between the two complex 

variables N[k] and (X[k] H[k]).  
By applying a set of Mel-scale filters (L in total) to the power 

spectrum in Eq. (3), we have the l-th Mel filter-bank energies for 
distorted speech, clean speech, noise and channel: 
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Then, the following relation is obtained in the Mel filter-bank 
domain for the l-th Mel filter-bank output [6]: 
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The phase-factor vector for all the L Mel filter-banks is 

defined as: [ ]TLl )()()2()1( ,...,...,, αααα= .         (10) 
By taking logarithm and multiplying the non-square discrete 

cosine transform (DCT) matrix C to both sides of Eq. (9) for all the 
L Mel filter-banks, the following nonlinear distortion model is 
obtained in the cepstral domain: 
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and C-1 is the (pseudo) inverse DCT matrix. y, x, n and h are the 
vector-valued distorted speech, clean speech, noise, and channel, 
respectively, all in the MFCC domain. The • operation for two 

vectors denotes element-wise product, and each exponentiation of 
a vector above is also an element-wise operation. 

Using the first-order VTS approximation with respect to x, n 
and h, and assuming the phase-factor vector αααα is independent of x, 
n and h, we have 
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and diag(.) stands for the diagonal matrix with its diagonal 
component value equal to the value of the vector in the argument. 
Each division of a vector is also an element-wise operation. 

For the given noise mean vector nμ  and channel mean 

vector hμ , the value of G(.) depends on mean vector xμ . 

Specifically, for the k-th Gaussian in the j-th state, the element of 
G(.) matrix becomes: 
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Then, the Gaussian mean vectors (the k-th Gaussian in the j-th 
state) in the adapted HMM for the degraded speech can be 
obtained by taking expectation of both sides of Eq. (13): 

( )nhjkxhjkxjky ,,g  μμμμμμ ,,,, ++≈ ,  (18) 

which is applied only to the static portion of the MFCC vector. 
The covariance matrix ,, jkyΣ  in the adapted HMM can be 

estimated as a weighted sum of jkx,Σ , the covariance matrix of the 

clean HMM, and nΣ , the covariance matrix  of noise, by taking 

variance “operation” on both sides of Eq. (13):  
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Here, no channel variance is taken into account because we treat 
the channel as a fixed, deterministic quantity in a given utterance. 

For the delta and delta/delta portions of MFCC vectors, the 
adaptation formulas for the mean vector and covariance matrix are  
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2.2 Algorithm for Re-estimation of Noise and Channel 
EM algorithm is developed as part of the overall Phase-JAC/VTS 
algorithm to estimate all the noise and channel parameters using 
the first order VTS approximation. Let ( )kjt ,γ  denote the 

posterior probability for the k-th Gaussian in the j-th state of the 

HMM, i.e., ( ) ( )λεθγ ,,, Ykjpkj ttt === ,       (24) 

h[m] x[m] y[m] 

n[m] 
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where tθ denote the state index, and tε denote the Gaussian index 

at time frame t. λ  is the old parameter sets of noise and channel. 
The re-estimation formulas for the static channel mean hμ , the 

static and dynamic noise means [ nμ , nΔμ , nΔΔμ ], and the static and 

dynamic noise variances [ nΣ , nΔΣ , nΔΔΣ ] are (derivations omitted):  
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nΔΣ  and nΔΔΣ are updated in a similar way to Eq. (29) by 

replacing the static parameters with the corresponding delta and 
delta/delta parameters (derivations omitted here). 

2.3 Algorithm implementation  

The implementation steps for the JAC/VTS HMM adaptation 
algorithm described so far in this section and used in our 
experiments are summarized and described in the following: 
 
1. Read in a distorted speech utterance; 
2. Set the channel mean vector to all zeros; 
3. Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames (speech-free) from the 
utterance using sample estimates; 

4. Compute the Gaussian- and αααα -dependent G(.) with (17), and 
update/adapt the HMM parameters with (18)–(23); 

5. Decode the utterance with the adapted HMM parameters; 
6. Compute posterior probabilities of (24) and then re-estimate 

all the noise and channel parameters with (25)-(29);  
7. Compute G(.) with (17), and update/adapt the HMM 

parameters with (18)–(23); 
8. Use the final adapted model to obtain the utterance output 

transcription; 
9. Goto step 1. 

 

A challenging problem in Phase-JAC/VTS is the setting of the 
phase-factor vector, αααα . In Section 2.1, we assumed αααα is 
independent of speech, noise, and channel (This assumption will 
be removed in our future study). And in current implementation, 
each component of αααα is also assumed to be a fixed, tunable 

value, α , i.e., αα =)(~ l . In the experiment section, varying values 
of α are chosen to evaluate Phase-JAC/VTS. Our earlier JAC/VTS 
[5] can be considered as a special case of the current Phase-
JAC/VTS when 0=α  uniformly. 

The steps above are for one pass decoding and one-iteration EM 
re-estimation of noise/channel parameters, as we have carried out 
so far in our experiments to be presented in the next section. For 
multiple-pass decoding (as will be reported in future publications), 
there would be a loop between steps 5 and 7, and multiple-iteration 
EM for noise/channel re-estimation would be implemented by 
looping between steps 6 and 7. 

3. SPEECH RECOGNITION EXPERIMENTS 

The effectiveness of the Phase-JAC/VTS algorithm presented in 
Section 2 has been evaluated on the standard Aurora 2 task [7] of 
recognizing digit strings in noise and channel distorted 
environments. The clean training set is used to train the baseline 
maximum likelihood estimation (MLE) HMMs. The test material 
consists of three sets of distorted utterances. The data in set-A and 
set-B contain eight different types of additive noise, while set-C 
contain two different types of noise plus additional channel 
distortion. The baseline experiment setup follows the standard 
script provided by ETSI, including the standard complex 
“backend” [8] of HMMs trained using the HTK toolkit. 

The features are 13-dimension MFCCs, appended by their 
first- and second-order time derivatives.  The cepstral coefficient of 
order 0 is used instead of the log energy in the original script.  

The Phase-JAC/VTS algorithm presented in this paper is used 
to adapt the ML-trained HMMs utterance by utterance for the 
entire test set (Sets-A, B, and C). The detailed implementation 
steps described in Section 2.3 are used in the experiments. We use 
the first and last N=20 frames from each utterance for initializing 
the noise means and variances. Only one pass processing is used in 
the reported experiments.  

The theory developed in [6] has shown that given true noise 
and channel parameters, the range of α value is between -1 and 1 
in theory. To take into account inaccuracy in the noise/channel 
estimates, we widened the range of the α value, which was set up 
to 5 (with an interval of 0.25). The corresponding recognition 
accuracies (Accs) are plotted in Figure 2. The results are somewhat 
surprising in two ways. First, the optimal value is 5.2=α , 
significantly beyond the normal range between -1 and 1 (see 
detailed discussions below). Second, the recognition accuracy at 

5.2=α , 93.32%, is much higher than the use of phase-insensitive 
distortion model for JAC/VTS (equivalent to setting 0α = in 
Figure 2), demonstrating the critical role of the use of phase 
asynchrony between clean speech and the mixing noise. Table 1 
lists detailed test results for clean-trained complex backend HMM 
system after Phase-JAC/VTS adaptation with the optimalα value. 

The optimal performance achieved at 5.2=α seems to have 
contradicted the theory in [6] that α should be less than 1. We 
offer two possible reasons here. First, the theory in [6] is built on 
the basis that the correct noise and channel vectors are given. For 
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Phase-JAC/VTS, the noise and channel are estimated with possibly 
systematic biases, because the truncated VTS discards the second 
and all higher-order terms. A larger α may be used partly to 
compensate for these biased estimates. (More detailed analyses on 
this are provided in [9]). Second, by definition of (8), α is a 

random variable, due to the random speech/noise mixing phase
k

θ , 

instead of a deterministic one as used in this study. Extending the 
current work by including variance of α may move the optimal 
range of α values back closer to the normal, expected range of 
lower than one.   

83.00%

85.00%

87.00%

89.00%

91.00%

93.00%

95.00%

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 
Figure 2: Aurora 2 recognition accuracy for the Phase-JAC/VTS 
algorithm as a function of the α value. 

 
Table 1: Detailed Aurora 2 accuracy of clean-trained complex backend HMMs after adaptation using Phase-JAC/VTS where 5.2=α . 

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Average
20 dB 99.14 99.03 99.52 99.11 99.20 99.26 99.03 99.58 99.51 99.34 99.39 99.06 99.22 99.26
15 dB 98.99 98.55 99.05 98.86 98.86 98.77 98.67 99.25 99.07 98.94 98.86 98.58 98.72 98.84
10 dB 97.57 96.86 97.76 96.36 97.14 96.28 97.31 97.7 97.84 97.28 97.64 97.1 97.37 97.26
5 dB 94.23 90.75 94.84 92.41 93.06 90.85 92.38 93.89 93.34 92.62 94.6 92.11 93.35 93.01
0 dB 80.56 68.74 83.48 80.16 78.24 70.95 78.87 80.7 79.98 77.62 82.87 76.75 79.81 78.56
Average 94.10 90.79 94.93 93.38 93.30 91.22 93.25 94.22 93.95 93.16 94.67 92.72 93.70 93.32

Clean Training - Results
A B C

 

4. CONCLUSION 

In this paper, we have presented our recent development of the 
Phase-JAC/VTS algorithm for HMM adaptation and demonstrated 
its effectiveness in the standard Aurora 2 environment-robust 
speech recognition task. The algorithm distinguishes itself from all 
previous related work by introducing the novel phase term in JAC 
model of environmental distortion for on HMM adaptation. We 
derived the estimation formulas for all noise and channel 
parameters and the adaptation formulas for all static and dynamic 
HMM parameters in the same framework of Phase-JAC/VTS.   

In the experimental evaluation using the standard Aurora 2 
task, the proposed Phase-JAC/VTS algorithm has achieved 93.32% 
accuracy using the clean-trained complex HMM backend as the 
baseline system for the model adaptation. This reaches the highest 
performance number in the literature on this task without 
discriminative training of the HMM system. The experimental 
results have shown that the value of the phase-factor vector is 
critical to the success of Phase-JAC/VTS.  

Several research issues need to be addressed in the future to 
further increase the effectiveness of the algorithm presented in this 
paper. First, the α value is chosen manually and is set as same for 
all utterances in this study. An utterance-dependent strategy for 
setting α should be derived. Second, the phase-factor vector, αααα , is 
set to have a constant α value for its every component. By 
examining Eqs. (8) and (10), it is easy to see components of 
αααα have different values. Third, as shown in [6], instead of being a 
constant vector, αααα should follow a distribution and this will 
change the current algorithm in a significant way. Fourth, as 
analyzed in the experiment section, biased estimates of noise and 
channel may result in the unusual optimal values of α . We need 
to examine whether the α  value fits the theoretically range as 
analyzed in [6] after obtaining more reliable estimates of noise and 
channel. Resolving the above issues, we expect to achieve greater 
effectiveness of the Phase-JAC/VTS algorithm than what has been 
reported in this paper. 
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