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ABSTRACT

We present a modified form of the Maximum Mutual Information
(MMI) objective function which gives improved results for discrim-
inative training. The modification consists of boosting the likeli-
hoods of paths in the denominator lattice that have a higher phone
error relative to the correct transcript, by using the same phone accu-
racy function that is used in Minimum Phone Error (MPE) training.
We combine this with another improvement to our implementation
of the Extended Baum-Welch update equations for MMI, namely
the canceling of any shared part of the numerator and denominator
statistics on each frame (a procedure that is already done in MPE).
This change affects the Gaussian-specific learning rate. We also in-
vestigate another modification whereby we replace I-smoothing to
the ML estimate with I-smoothing to the previous iteration’s value.
Boosted MMI gives better results than MPE in both model and
feature-space discriminative training, although not consistently.

Index Terms— MMI, MPE, Maximum Margin, Discriminative
Training, Speech Recognition

1. INTRODUCTION

There has recently been some interest in large margin techniques for
speech recognition. In the large margin approach described in [1, 2],
a margin is enforced which is proportional to the Hamming distance
between the hypothesized utterance and the correct utterance - i.e.
the number of frames for which the HMM state which aligns to that
frame is different from the one from the correct transcript. We ap-
ply a similar idea to the MMI objective function by boosting the
likelihood of hypothesized utterances proportional to their difference
from the correct utterance. We also introduce improvements to the
optimization prodedure.

In Section 2 we introduce theMaximumMutual Information cri-
terion and explain how we optimize it for discriminative training; in
Section 3 we introduce the boosted MMI objective function; in Sec-
tions 4 and 5 we describe our improvements to the update equations
and review feature space discriminative training. Sections 6 and 7
give experimental results and conclusions.

2. MAXIMUMMUTUAL INFORMATION

The Maximum Mutual Information (MMI) objective function [3, 4,
5] seeks to maximize the posterior probability of the correct utter-
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ance given our models:

FMMIE(λ) =

RX
r=1

log
pλ(Xr|Msr )κP (sr)P

s
pλ(Xr|Ms)κP (s)

, (1)

where λ represents the acoustic model parameters, Xr are the train-
ing utterances,Ms is the HMM sequence corresponding to a sen-
tence s, and sr is the correct transcription for the r’th utterance, κ
is the acoustic scale as used in decoding and P (s) is a weakened
language model such as a unigram.

Our optimization of the MMI objective function uses the Ex-
tended Baum-Welch update equations and it requires accumulating
two sets of the normal kind of statistics used for E-M updates of
HMMs, via forward-backward accumulation on two HMMs for each
utterance. The numerator HMM (corresponding to the numerator in
Equation 1) is the correct transcription, and the denominator HMM
is a recognition model containing all possible words. Statistics ac-
cumulation is done by generating lattices once and doing forward-
backward on the lattices on each iteration. This not only reduces
computation but allows us to more correctly optimize Equation 1
because it allows us to apply the acoustic weight κ at the word level;
application at the state level does not lead to as good results [4].
Forward-backward statistics accumulation on the lattices gives us
two sets of statistics which we distinguish with the superscripts num
and den. EBW is an iterative procedure which we apply for about
four iterations for best results.

The Gaussian means and variances are updated as follows (valid
for full covariances):

μ̂jm =
xnum

jm − xden
jm + Djmμjm

γnum
jm − γden

jm + Djm

(2)

Σ̂jm =
Snum

jm −Sden
jm +Djm(Σjm+μjmμT

jm)

γnum
jm − γden

jm + Djm

− μ̂jmμ̂
T
jm (3)

where j andm are the HMM-state and Gaussian index respectively,
γjm is the “count” of the Gaussian, and xjm and Sjm are the stan-
dard weighted sums over features x(t) and x(t)x(t)T respectively.
For the diagonal-covariance case the above would be done with
just the diagonal elements of the variance. The Gaussian-specific
learning-rate constants Djm are set to the largest of (i) the typical
case: Eγden

jm , whereE is a constant typically set to 2; and (ii) double

the smallestDjm that would lead to Σ̂jm being positive definite. We
can easily handle case (ii) by trying the update using aDjm equal to
half of that in case (i), then increasing it if necessary by small steps
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until Σ̂jm is positive definite (or all positive in the diagonal case),
and then doubling it to get the final value.

For a performance improvement we can also do I-smoothing [4],
which amounts to gradually backing off to the ML estimate as the
counts get small. We can represent I-smoothing in the most general
way as follows as a modification to the statistics:

x
num
jm := x

num
jm + τμ

b
(4)

S
num
jm := γ

num
jm + τ (μb

μ
bT

+ Σ
b) (5)

γ
num
jm := γ

num
jm + τ, (6)

where μb and Σ
b are the parameter values we are backing off to,

and τ (e.g. τ = 100 for MMI, or τ = 50 for MPE) is a constant we
introduce. In the normal case of backing off to the ML estimate, μb

and Σ
b are estimated from the ML statistics on the current iteration

which in the MMI case are the same as the numerator statistics.

The mixture weights cjm are optimized as follows [4] (recent
experiments show that this gives roughly a 0.5% relative improve-
ment versus leaving them unchanged). For a particular HMM state
j we optimize an auxiliary function given by

MX
m=1

γ
num
jm log cjm −

γden
jm

c′jm

cjm, (7)

where c′jm is the previous value. This is done iteratively by set-

ting c
(0)
jm = c′jm and for (e.g.) p = 0 . . . 100, doing c

(p+1)
jm =

γnum
jm +kjmc

(p)
jm

P
m γnum

jm
+kjmc

(p)
jm

, where kjm =

„
maxm

γden
jm

c′
jm

«
−

γden
jm

c′
jm

. Tran-

sition probabilities (not used by us) can be updated like mixture
weights.

2.1. Minimum Phone Error
The MPE objective function, which has some relevance to boosted
MMI, is the sum of the phone accuracies of all possible sentences
given the reference, weighted by their likelihood as a function of the
model:

FMPE(λ) =

RX
r=1

P
s
pλ(Xr|Ms)

κP (s)A(s, sr)P
s pλ(Xr|Ms)κP (s)

, (8)

where A(s, sr) is the raw phone accuracy of s given the reference
sr, which equals the number of correct phones minus the number
of insertions. This raw accuracy must be approximated for effi-
ciency [6]. We also recently investigated [7] replacing A(s, sr) with
various other functions including a state-level accuracy which we
call state-level Minimum Bayes Risk (s-MBR) after [8]. This works
as well as or better than the phone-level accuracy, and is the same as
the Hamming distance used in the large margin techniques in [1, 2].

3. BOOSTEDMMI

In boosted MMI the objective function is:

FMMIE(λ) =

RX
r=1

log
pλ(Xr|Msr )κP (sr)P

s
pλ(Xr|Ms)κP (s) exp(−bA(s, sr))

,

(9)
where b (e.g. b = 0.5) is a boosting factor which we introduce. We
boost the likelihood of the sentences that have more errors, thus gen-
erating more confusable data. Boosted MMI can viewed as trying
to enforce a soft margin that is proportional to the number of errors
in a hypothesised sentence, as in [1, 2]. Note that A(s, sr), which

is the accuracy of a sentence s given the reference sr , can be com-
puted in various ways and this must be specified along with b. Unless
otherwise stated we compute it per phone, the same way as for nor-
mal MPE. The extra computation involved in BMMI as opposed to
MMI is very small: while we are doing the forward-backward al-
gorithm on the denominator lattice, for each arc in the lattice we
subtract from the acoustic log-likelihood b times the contribution to
the sentence-level accuracyA(s, sr) arising from the arc in question.
This behaves like a modification to the language model contribution
on each arc.

4. IMPROVEMENTS TOMODEL-SPACE UPDATES
4.1. Canceled statistics
The first improvement we made to the optimization procedure is to
cancel the statistics accumulated on each frame from the numera-
tor and denominator. This is something that happens anyway in our
implementation of MPE. It means that if the Gaussian-specific oc-
cupancy on a particular time t is nonzero for both numerator and
denominator models we cancel any shared part, so

γjm(t)numc := γjm(t)num − min(γjm(t)num
, γjm(t)den) (10)

γjm(t)denc := γjm(t)den − min(γjm(t)num
, γjm(t)den). (11)

We are using the superscripts numc and denc for the canceled nu-
merator and denominator statistics; we omit the utterance subscript
r for convenience. The only effect this canceling has is to change
the Gaussian-specific learning-rate constant Djm. Note that if we
are doing the normal form of I-smoothing to the ML estimate, we
must store the unmodified numerator (num) statistics.

4.2. I-smoothing to previous iteration
The other change which we introduce here is I-smoothing to the pre-
vious iteration. In I-smoothing for MMI we have previously backed
off to the ML estimate. As mentioned in [9], in our current imple-
mentation of MPE we back off to the MMI estimate (based on one
iteration of EBW starting from the current iteration’s statistics). We
show here that I-smoothing to the previous iteration can be better
than I-smoothing to the ML estimate. This is simpler to implement
as it is no longer involves changing the numerator statistics; we can
simply change our rule for obtainingDjm to be the largest of: (i) the
typical case: τ + Eγden

jm , or (ii) double the smallestDjm that would

lead to Σ̂jm being positive definite.

5. FEATURE-SPACE DISCRIMINATIVE TRAINING

We have previously introduced feature-space MPE (fMPE) [10],
with important features of our current implementation described
in [11]. Feature-space discriminative training gives a large part of
our improvement from discriminative training. Here we introduce
fMMI, which is the application of the same techniques to the MMI
objective function (we use “fBMMI” if boosted MMI is the objec-
tive function). Only a single modification to our recipe is necessary
other than the changed objective function. As mentioned in [11],
we set the learning rate in fMPE based on a target objective func-
tion improvement of 0.04 or 0.06 on the first iteration (0.04 for tasks
with lowWER or where the amount of training data is very large and
hence the criterion improvement due to overtraining is expected to
be small. This is reduced for fMMI to 0.01 or 0.015 (0.01 for experi-
ments reported here), to compensate for the lower range of the MMI
objective function; this leads to similar E values of around 6 to 12;
in fact, it would probably be better to simply set the E used in fMPE
to a fixed value such as 7 for both MPE and MMI-based training.
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6. EXPERIMENTAL RESULTS

We report results here on a large number of different experimental
conditions; we use an identifier for each condition and the details of
each are shown in Table 1. All systems have quinphone cross-word
context; all have cepstral mean subtraction and some have cepstral
variance normalization (not shown in table); any VTLN and/or fM-
LLR adaptation is indicated. All setups with fMLLR are SAT trained
unless otherwise indicated. Setups that are shown as having fMLLR
are also tested with regression tree MLLR following the fMLLR.

Identifier
(#states,#Gauss)

Description

ABN2300
(5k, 400k)

2300h Arabic broadcast news (GALE
program), VTLN+fMLLR. Test: Eval06

ACTS80
(3.5k, 75k)

80h Iraqi Arabic conversational tele-
phone speech (LDC2006S45, GALE),
VTLN+fMLLR. Test: LDC-devtest
(2.5h)

EBN50
(2.2k, 50k)

50h English broadcast news, unadapted.
Test: RT-04.

EBN430
(6k, 300k)

430h English broadcast news,
VTLN+fMLLR, no SAT. Test: RT-
04.

EBN700
(6k, 250k)

700h English broadcast news, un-
adapted. Test: RT-04.

ECTS175
(4.2k, 150k)

175h English conversational telephone
speech, VTLN+fMLLR. Test: internal
test set.

ECTS2000
(8k, 450k)

2000h English conversational telephone
speech, VTLN+fMLLR. Test: internal
test set.

EPS80
(8k, 190k)

175h English EU parliamentary speech
(TC-STAR project), VTLN+fMLLR.
Test: dev06+eval06

Table 1. Experimental conditions

6.1. Model-space BMMI vs MPE
The following experiments give results for model-space training.
Both boosting and canceling give substantial improvements starting
from the MMI baseline, combining to make the MMI-based results
slightly better than MPE.

Objf (I-smoothed→ Objf) WER

ML 25.3
MPE→MMI 21.6
MPE→ML 22.3
MMI→ML 23.0

MMI-c→ML,b = 0.0 22.4
BMMI-c→ML,b = 0.25 22.0
BMMI-c→ML,b = 0.5 21.7
BMMI-c→ML,b = 0.75 21.6
BMMI-c→ML,b = 1.0 21.5
BMMI-c→ML,b = 2.0 22.1

MPE→BMMI-c→ML, b = 0.5 24.2

Table 2. EBN50: MPE vs (B)MMI, 4th iter, κ=0.053

Table 2 gives results for model-space training in the EBN50
setup. The baseline is MPE I-smoothed to MMI (MPE→MMI). We

denote the use of canceled statistics with the suffix -c (e.g. BMMI-
c). X→Y means the criterion X smoothed to Y with I-smoothing;
for MPE→ X we always use τ = 50, and for MMI→X we use
τ = 100. As we can see, unmodified MMI is worse than MPE
but BMMI with canceled statistics (-c) is the same or slightly better
with the appropriate value of b. We get 0.6% of improvement from
canceling statistics and an additional 0.9% from boosting. However
MPE smoothing to BMMI-c does not work, showing a large degra-
dation on iteration 4. This probably relates to training too fast.

Objf (smoothed→ objf) WER

ML 20.5
Iteration
2 4
κ=0.1

MPE→MMI 18.8 18.1
MPE→ML 18.9 18.6
MMI→ ML 19.5 18.9

BMMI→ML,b = 0.5 19.3 18.6
BMMI-c→ ML,b = 0.5 18.4 17.9

κ=0.053
BMMI-c→ ML,b = 0.5 17.8 17.3

MPE→BMMI-c→ML,b = 0.5 17.6 20.1

Table 3. EBN700 setup: MPE vs (B)MMI

Table 3 shows similar experiments on another English Broadcast
News setup with 700 hours of training data. Most experiments are
with κ=0.1 but we confirm the improvement of changing the acoustic
weight to 0.053 with our best experiment (BMMI-c→ML,b = 0.5).
Again smoothing from MPE to BMMI-c leads to overtraining. The
overall conclusion is again that BMMI-c→ML is better thanMPE→
MMI. With these experiments we can how much of the improvement
versus plain MMI due to the boosting versus canceling: 0.3% comes
from boosting and 0.7% from the canceling of statistics.

6.2. I-smoothing

Objf (smoothed→ objf) WER (RT-04)

ML 25.3
Iteration
2 4

MPE→MMI 22.6 21.6
MPE→ML 22.9 22.3
MPE→ prev 22.8 22.1

BMMI-c→ML,b = 0.5 22.3 21.7
BMMI-c→ prev,b = 0.5 22.1 21.3
BMMI-c b = 0.5 22.0 22.5

Table 4. EBN50: I-smoothing→ ML vs → previous iteration
(κ=0.053).

We also investigated I-smoothing to the previous iteration rather
than the ML estimate. This appears to give an improvement for
model-space only training, but after feature space training it does
not appear to help. Table 4 shows the effect of I-smoothing to the
ML estimate versus the previous iteration, for both MPE (τ=50) and
MMI (τ=100). Smoothing to the previous iteration is better, by 0.2%
for MPE and 0.4% for BMMI-c. In other experiments, we compared
smoothing to the previous iteration versus ML for BMMI-c,b = 0.5
after boosted fMMI discriminative training (b=0.5) for two setups:
EBN50 and EBN430. In both cases the WER was unchanged (for
absolute values, see Table 5).
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6.3. Feature space BMMI experiments

Setup κ ML fMPE +MPE fBMMI +BMMI-c

ABN2300 0.1 32.8 29.0
0.053 29.7

ACTS80 0.1 43.2 41.1 38.4
0.053 43.2 40.4 36.8 37.5 35.9

EBN50 0.1 25.3 21.4 20.5
0.053 25.3 20.7 19.6 19.2 18.1

EBN430 0.053 16.2 14.0 13.1

EBN700 0.1 20.5 16.7 16.0
0.053 20.5 17.2 16.2 15.3

ECTS175 0.1 31.8 29.6 28.9
0.053 31.8 29.4 28.6 29.1 28.3

ECTS2000 0.1 27.5 25.6
0.053 26.0

EPS80 0.1 8.8 7.6 7.2
0.053 8.8 7.6 7.2 7.3 6.8

Table 5. MPE vs BMMI for feature-space discriminative training

Table 5 compares an MPE-based and a BMMI-based recipe for
feature-space followed by model-space discriminative training, on
all of our training setups. We get improvements in all but the two
setups with the most data. We do three or four iterations of feature-
space discriminative training followed by two or three iterations of
model-space discriminative training, except for the ABN2300 and
ECTS2000 setups where we show only two iterations of feature-
space training (the number of iterations is not shown in the table but
in all cases we compare the same iteration). All BMMI experiments
use b = 0.5. For model space training, in the MPE-based setup we
use the backoff scheme MPE→MMI, and in the BMMI-based setup
we use MMI→ML. The table gives results for two acoustic weights:
κ=0.1 which was previously our default value, and κ = 0.053 which
appears to give better results for MPE in all cases tested except
EBN700 (which has the most training data of those tested, probably
not coincidentally). The reader should compare the fMMI+BMMI-c
number with the best fMPE+MPE number. We obtain improvements
in all cases except the ABN2300 and ECTS2000 setups, where we
get a degradation of 0.7% and 0.5% respectively. The results suggest
that an MMI based criterion may be preferable when the amount of
training data (per parameter) is smaller, something also suggested
by [4]. Note also that the MPE-based results with different acoustic
weights suggest that a less aggressive weighting (i.e., 0.1) may be
better when the amount of training data is very large.

6.4. Optimal boosting factor
We also investigated the optimal boosting factor b for BMMI based
discriminative training. The reader can refer to results given above
(Table 2) for the optimal boosting factor for model-space training
using BMMI-c, which appears to be around 1.0.

For feature-space BMMI, the optimal boosting factor seems to
be lower and the amount of improvement appears to be smaller.

In the EBN50 setup we investigated the optimal boosting fac-
tor while attempting to minimize interactions with the learning rate
by setting the E in fMMI (for training our most important transfor-
mation, see [7]) directly to 7.0. In this case the fBMMI WER after
two iterations with b=(0.0,0.5,1.0,1.5) were (21.0%, 21.0%, 21.1%,
21.4%) which fails to show any improvement at all from boosting.
In the EBN700 and EPS80 setups however, with the usual method of
settingE we got 0.1% and 0.2% absolute improvements from chang-

ing b = 0.0 to b = 0.5, so we do get a very small improvement from
boosting in the fMMI case. These results are consistent with the idea
that boosting helps primarily by creating more confusable data; we
believe that the amount of data is less of an issue for feature-space
training as we observe that we get more WER improvement for less
objective function improvement indicating less overtraining.
We also investigated generating lattices for BMMI training that

reflect the same boosting of less correct utterances, using the EBN50
setup, with A(s, sr) defined as the Hamming distance between state
sequences (and ten times smaller b). Our experiments failed to show
any improvement from matched lattice generation.

7. CONCLUSIONS

We have introduced a modification to the MMI objective function
– error-boosting – and a modification and to the MMI training pro-
cedure – the canceling of statistics – that, taken together, appear to
make MMI-based model-space training better than MPE. The appli-
cation of error-boosting to feature-space MMI discriminative train-
ing also leads to a small improvement. We have experimented with
a totally MMI-based feature and model-space discriminative train-
ing procedure and found that it sometimes but not always leads to
substantial improvements over our previous MPE-based procedure.
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