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ABSTRACT

Conditional random elds (CRFs) are often estimated using an en-
tropy based criterion in combination with Generalized Iterative Scal-
ing (GIS). GIS offers, upon others, the immediate advantages that it
is locally convergent, completely parameter free, and guarantees an
improvement of the criterion in each step. GIS, however, is limited
in two aspects. GIS cannot be applied when the model incorpo-
rates hidden variables, and it can only be applied to optimize the
Maxmimum Mutual Information Criterion (MMI). Here, we extend
the GIS algorithm to resolve these two limitations. The new ap-
proach allows for training log-linear models with hidden variables
and optimizes discriminative training criteria different from Maxi-
mum Mutual Information (MMI), including Minimum Phone Error
(MPE). The proposed GIS-like method shares the above-mentioned
theoretical properties of GIS. The framework is tested for optical
character recognition on the USPS task, and for speech recognition
on the Sietill task for continuous digit string recognition.

Index Terms— speech recognition, parameter estimation, max-
imum entropy, GIS, optical character recognition

1. INTRODUCTION

Log-linear models have become an important technique in various
elds of pattern recognition. They appear in different terminolo-
gies and avors, e.g., maximum entropy (Markov) models, logistic
regression, and CRFs. The only input of such models are feature
functions fi(x, c), which map the observation vector x and a class
c ∈ {1, . . . ,C} to abstract features. Given the feature functions, the
log-linear functional structure is motivated by the maximum entropy
principle

pΛ(c|x) =
exp
(∑D

i=1 λi fi(x, c)
)

∑
c′ exp

(∑D
i=1 λi fi(c′, x)

) (1)

where D denotes the number of features functions. The parameters
Λ = {λ1, . . . } are typically determined by maximizing the empirical
entropy on the training data {(x1, c1), . . . , (xN , cN)} with observation
vectors xn and class labels cn.

F (Λ) =
N∑
n=1

log pΛ(cn|xn). (2)

This material is partly based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No. HR001-06-
C-0023, and was partly funded by the European Union under the integrated
project TC-STAR (FP6-506738). Any opinions, ndings and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily re ect the views of the DARPA.
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Fig. 1. Step sizes for Armijo’s approach and GIS; N=0.1, F=138,
D=513 (typical values for USPS)

The optimization is often done using GIS [1]. Many problems of
practical interest like for example hidden CRFs (HCRFs) [2], how-
ever, are extensions to this purely log-linear formulation, involving
hidden variables which cannot be optimized with standard GIS.

From the theoretical point of view, GIS is attractive because this
algorithm does not only guarantee to converge to a critical point (the
global optimum in the special case of Eq. (2)) but also guarantees to
increase the objective function in each iteration. This is in contrast to
general gradient based procedures for which convergence to a critical
point can be proven at best, e.g. Newton method or RProp [3].

Like for example Expectation Maximization (EM) [4], GIS is
based on the concept of growth transformations. Probably the most
general and simplest growth transformation goes back to Armijo [5].
He showed that for objective functions with Lipschitz continuous
rst derivatives, global and non-vanishing step sizes exist. Exam-
ples for such functions are log-linear models or Gaussian models
with oored variances. However, Armijo’s step sizes turn out to be
rather pessimistic compared to GIS, see Fig. 1. Other approaches de-
compose the problem into simpler subproblems, i.e., the overall op-
timization is performed by alternating the simpli ed problems. Typ-
ical examples for this approach are the GEM and the extension of
GIS proposed in [6]. Here, we avoid such indirections and directly
optimize the objective function using a single auxiliary function.

Finally, there are growth transformations to estimate genera-
tive models discriminatively, e.g., the inequality for rational func-
tions [7, 8, 9], or the reverse Jensen inequality [10, 11]. Applying
these inequalities, however, leads to purely linear growth transforma-
tions which might be problematic. The use of regularization terms,
for example, avoids this problem, but then other problems occur
(e.g., the reverse Jensen inequality requires non-vanishing second
derivatives of the argument of the exponential). It was shown in [12]
that some special cases of log-linear models can be represented by
an equivalent generative model such that these growth transforma-
tions can be applied. However, because the model parameters (and
thus, the iteration constants) are ambiguous [12], the optimization
process heavily relies on the initial choice of the parameters. In
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addition, to efficiently calculate the iteration constants for complex
problems (e.g. Gaussian HMMs), typically several approximations
are made [11].

This paper is organized as follows. Sec. 2 generalizes the train-
ing criterion in Eq. (2) to hidden variables, e.g. HCRFs or MPE.
This generalized objective function can be optimized with an ex-
tended GIS-like algorithm as detailed in Sec. 3. Various applications
of this criterion are discussed in Sec. 4. Finally, Sec. 5 provides
experimental results and the paper is concluded in Sec. 6.

2. GENERALIZED OBJECTIVE FUNCTION

Many important problems (e.g. HCRFs) do not match the simple
objective function in Eq. (2). They often involve hidden variables in
some sense, requiring a more general formulation of the training cri-
terion. Using prior-like and sample dependent weights qn(c), pn(c) ≥
0 (not necessarily normalized), the extension

F (hidden)(Λ) =
∑
n

log
(∑

c qn(c) exp (
∑
i λi fi(xn, c))∑

c pn(c) exp (
∑
i λi fi(xn, c))

)
(3)

shall be considered.In the same way as Eq. (2), this objective func-
tion is maximized. The major difference between Eq. (2) and Eq. (3)
is the (weighted) sum over the classes in the numerator. Eq. (3) re-
duces to Eq. (2) for qn(c) = δccn and pn(c) = 1, in which case the sum
in the numerator consists of a single summand and GIS can be ap-
plied. For more complex examples beyond this simple special case,
the reader is referred to Sec. 4.

In the next section we propose an auxiliary function for this
generalized criterion. For this purpose, it is convenient to rewrite
the criterion as the sum of two objective functions F (hidden)(Λ) =
F (num)(Λ) − F (den)(Λ) with

F (num)(Λ) =
∑
n

log
⎛⎜⎜⎜⎜⎜⎝
∑
c

qn(c) exp
⎛⎜⎜⎜⎜⎜⎝
∑
i

λi fi(xn, c)
⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ . (4)

The objective function F (den)(Λ) is obtained from Eq. (4) by replac-
ing qn(c) with pn(c).

3. GIS-LIKE OPTIMIZATION

In this section, we derive an auxiliary function for the generalized
objective function introduced in the last section. The idea consists
of building an auxiliary function by decomposing the problem into
well-known subproblems and then combining these partial auxiliary
functions to a complete auxiliary function of F (hidden). First, we give
a summary on the notion of auxiliary functions. This concept is
then used to construct an auxiliary function for the desired objective
function.

3.1. Basic De nitions and Concept

The following lemmata are based on the concept of auxiliary func-
tions. According to [13], they are de ned based on the old (given)
and new (to estimate) parameters Λ′ and Λ, respectively.

De nition. Assume an objective function F (Λ) to be maximized.
An auxiliary function A(Λ|Λ′) (in the strong sense) of F (Λ) at Λ′
satis es the inequality F (Λ) − F (Λ′) ≥ A(Λ|Λ′) with equality for
Λ = Λ′.

The aim of an auxiliary function is to replace the original op-
timization problem by a related optimization problem which can

be tackled more easily. In the ideal case an analytical solution ex-
ists, e.g. GIS. Typically, auxiliary functions decouple the parameters
such that the optimization for the parameters are independent. Under
rather mild assumptions on the objective and auxiliary functions (e.g.
sufficiently smooth and bounded above), it can be shown that the
sequence over the iteration index k {Λk |Λk+1 � argmaxΛA(Λ|Λk)}
converges to a critical point of the associated objective function, i.e.,
the gradient of the objective function vanishes at Λ∞. The proof
consists of two steps: the existence of a stationary point and the
determination of possible stationary points. The existence follows
from the monotonicity and boundedness of the sequence. The sta-
tionary points are critical points of the objective function because it
can be shown that ∇F (Λ′) = ∇A(Λ′|Λ′). The next lemma is rather
simple but useful because it allows us to build auxiliary functions by
combining partial auxiliary functions.

Lemma (Concatenation). Let B be an auxiliary function of F at
Λ′ and letA be an auxiliary function of B at Λ′. ThenA is also an
auxiliary function of F at Λ′.

All bounds in the next subsection are based on the well-known
Jensen’s inequality. The results are stated in terms of generalized
numerator posteriors

qΛ(c|xn) =
qn(c) exp (

∑
i λi fi(xn, c))∑

c′ qn(c′) exp (
∑
i λi fi(xn, c′))

(5)

and generalized denominator posteriors pΛ(c|xn), which are de ned
analogously. In addition, we shall use the shortcut Δλi to denote the
difference of old and new parameters, λi − λ′i .

3.2. Auxiliary Function

Assuming that the objective function in Eq. (3) is bounded above,
it is sufficient to nd a suitable auxiliary function as de ned above.
Then, the following lemma concerning F (num) in Eq. (4) is valid:

Lemma (EM).

A(EM)(Λ|Λ′) =
∑
n

∑
c

qΛ′ (c|xn)
∑
i

Δλi fi(xn, c)

is an auxiliary function of F (num) at Λ′.

Proof. Basically, the same inequality as for EM [4] is used:

F (num)(Λ) − F (num)(Λ′)
(4),(5)
=

∑
n

log
⎛⎜⎜⎜⎜⎜⎝
∑
c

qΛ′ (c|xn) exp
⎛⎜⎜⎜⎜⎜⎝
∑
i

Δλi fi(xn, c)
⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

Jensen
≥

∑
n

∑
c

qΛ′ (c|xn)
∑
i

Δλi fi(xn, c)

� A(EM)(Λ|Λ′).

Equality holds for Λ = Λ′. �

The next lemma requires non-negative feature functions. This,
however, is not a restriction because negative feature functions can
be transformed by a suitable componentwise affine transformation to
satisfy these constraints without changing the posteriors.

Lemma (GIS). Suppose that fi(xn, c) ≥ 0 (∀i, n, c), and that∑
i fi(xn, c) ≡ F (∀n, c). Then

A(GIS )(Λ|Λ′) = N −
∑
n

∑
c

pΛ′ (c|xn)
∑
i

fi(xn, c)
F

exp (FΔλi)

is an auxiliary function of −F (den) at Λ′.
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Proof. Basically, the same inequalities as for GIS [1] are used:

−
(
F (den)(Λ) − F (den)(Λ′)

)
(4),(5) for pn(c)
= −

∑
n

log
⎛⎜⎜⎜⎜⎜⎝
∑
c

pΛ′ (c|xn) exp
⎛⎜⎜⎜⎜⎜⎝
∑
i

Δλi fi(xn, c)
⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

log x≤x−1
≥ N −

∑
n

∑
c

pΛ′ (c|xn) exp
⎛⎜⎜⎜⎜⎜⎝
∑
i

FΔλi
fi(xn, c)
F

⎞⎟⎟⎟⎟⎟⎠
Jensen
≥ N −

∑
n

∑
c

pΛ′ (c|xn)
∑
i

fi(xn, c)
F

exp (FΔλi)

� A(GIS )(Λ|Λ′).

Equality holds for Λ = Λ′. �

So far, we have built two separate auxiliary functions for the
numerator and denominator. Applying Lemma (Concatenation), we
obtain the complete auxiliary function as desired.

Corollary. Let fi(x, c) be feature functions subject to the constraints
in Lemma (GIS). Then A(hidden) = A(EM) + A(GIS ) is an auxiliary
function of F (hidden) at Λ′.

Proof. Set F = F (num) + F (den), B = A(EM) + F (den), and A =
A(EM) +A(GIS ) in Lemma (Concatenation). �

Notice that extensions like Improved Iterative Scaling (IIS) are
compatible with this extension. It is also possible to incorporate a
regularization term based on the p-norm into these formulae.

Setting the rst derivatives of A(hidden)(Λ|Λ′) = 0 and solv-
ing these equations for λi provides the (unique) solution Δλi =
1
F log

(
Ni(Λ′)
Qi(Λ′)

)
with slightly modi ed numerator statistics

Ni(Λ′) =
∑
n

∑
c

qΛ′ (c|xn) fi(xn, c).

The denominator statistics Qi(Λ′) are de ned in the same fashion.
The equations have the same structure as for standard GIS except
that now, Ni can depend on Λ′ and in general, qn(c) and pn(c) are not
true posteriors. Using n-th order features the accumulation statistics
simplify greatly (similarly for Qc(Λ′))

Nc(Λ′) =
∑
n

qΛ′ (c|xn)xn.

In ASR, these quantities can be calculated efficiently by general-
ized forward/backward (FB) probabilities, using a suitable semiring
depending on how the weights qn(c) and pn(c) are de ned. As an
example, the common FB probabilities [13] for word sequence vM1
and HMM state s at frame t, given the feature vectors xT1

pt(s, vM1 |x
T
1 ) = p(v

M
1 )
∑
sT1 :st=s

T∏
τ=1

p(sτ|sτ−1, vM1 )p(xτ|sτ, v
M
1 ) (6)

are associated with the probability semiring. Note that in this paper
these are used to calculate the context priors, see next section.

4. APPLICATIONS

There are several examples of practical interest which can be reduced
to the generalized objective function, cf. Eq. (3).
Mixtures [2]: Given a mixture s with densities l, the class c stands
for the index pair (s, l) and n corresponds to the observation number.

By means of the numerator weights qn(s, l) = δl∈s, the required den-
sities for a speci c mixture are ltered out. The denominator weight
pn(s, l) is set to one for all densities. The mixture weights are rep-
resented by a feature function, resulting in a uni ed treatment of the
parameters. This avoids the indirection proposed in [6].
HMMs [2]: HMMs are an extension to the simple mixture mod-
els. In this case, the features are de ned on segment rather than
on frame level. The algorithm copes with additional scaling factors
(e.g. language model scale) which can be absorbed by the log-linear
parameters and thus, do not change the log-linear model structure.
Context Priors [12]: In hybrid approaches, the state posteriors are
estimated with a suitable static classi er, e.g. SVMs or NNs. Here,
we employ a log-linear model to represent the state posteriors and
estimate the parameters by maximizing the entropy on frame level.
This approach has the disadvantage that it relies on a single state
sequence to represent the correct word sequence. The frame based
MMI criterion using context priors [12] offers a principled way to
smooth over competing states. The frame dependent context priors
pt(s, vM1 ) are de ned to be the FB probabilities from Eq. (6) without
the emission score p(xt |st, vM1 ) of the frame under consideration

F (frame)(Λ) =
T∑
t=1

log
⎛⎜⎜⎜⎜⎜⎝
∑
s pt(s,wN1 )pΛ(xt |s,w

N
1 )∑

vM1

∑
s pt(s, vM1 )pΛ(xt |s, v

M
1 )

⎞⎟⎟⎟⎟⎟⎠ .
The sum in the numerator is basically over all possible states given
the word sequence wN1 and thus, we have a non-trivial sum in the nu-
merator even in the case of single densities. Setting the denominator
weights to the context priors pt(s, vM1 ) and the numerator weights to
the context priors for the correct word sequence and to zero other-
wise, leads to the generalized criterion in Eq. (3).
Risk Based Criteria [13]: MPE and similar risk based criteria max-
imize the expectation of a prede ned accuracy function, e.g. the
phone accuracy A[vM1 |w

N
1 ] ≥ 0 of word sequence v

M
1 given word se-

quence wN1 [13]. In this case n is obsolete because the criterion is
de ned on word sequences over the complete corpus and not only
over single segments, cf. c. Then, such criteria conform with Eq. (3)
for p1(vM1 ) = 1 and q1(v

M
1 ) = A[v

M
1 |w

N
1 ]. Remember that the feature

count F (see above) can be calculated on segment level because the
denominator is the same as for MMI. Finally, it can be shown that
1-best MCE is an instance of Eq. (3) as well.

5. EXPERIMENTAL RESULTS

The proposed algorithm (’hiddenGIS’) is applied to mixtures on the
well-known United States Postal Service (USPS) database contain-
ing handwritten digits and to context priors on the German digit
string recognition task Sietill. Both these applications go beyond
standard GIS because of the densities (USPS) or the HMM states
(Sietill), see Sec. 4 for more details.

5.1. USPS
The well-known USPS Handwritten Digit Database consists of iso-
lated and normalized images of handwritten digits taken from US
mail envelopes scaled to 16 x 16 pixels. The database contains a
separate training and test set, with 7,291 and 2,007 images, respec-
tively1. One disadvantage of the USPS corpus is that no development
test set exists, resulting in the possible underestimation of error rates
for all of the reported results. Note that this disadvantage holds for
almost all data sets available for image object recognition. The US
Postal Service task is still one of the most widely used reference
data sets for handwritten character recognition and allows fast ex-
periments due to its small size. The test set contains a large amount

1Data available from ftp://ftp.kyb.tuebingen.mpg.de/pub/bs
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Fig. 2. USPS, mixtures, different optimization schemes (hiddenGIS,
RProp, QProp) and initializations (upper: GMM, lower: random).
Left: evolution of F (hidden) on training corpus. Right: evolution of
word error rate WER [%] on test corpus. Note the different scaling
of the x axis for hiddenGIS and QProp/RProp.
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(QProp) and 250 (hiddenGIS). Left: evolution of F (hidden) on male
training corpus. Right: evolution of word error rate WER [%] on
male test corpus. Note the different scaling of the x axis for hid-
denGIS and QProp.

of image variability and is considered to be a ”hard” recognition
task. Good error rates are in the range of 2-3% and use advanced
modeling techniques, e.g. deformation models [14]. Here, we use
simple Gaussian mixture models (GMMs) with 16 densities/mixture
in combination with the gray-scale features augmented with Sobel
based derivatives, amounting to a total of 512 features. Regulariza-
tion based on a Gaussian prior was used for a smoother convergence
behavior. Comparative results are shown in Fig. 2.

5.2. Sietill
The recognition system is based on whole-word HMMs with 214
distinct states plus one for silence. The vocabulary consists of the
11 German digits (including ’zwo’). The observation vectors con-
sist of 12 cepstral features without any derivatives. The Linear Dis-
criminant Analysis (LDA) is applied to 5 consecutive frames and
projects the resulting feature vector to 25 dimensions. Both training
and test corpus consist of about 5.5h audio data/21k spoken digits.
The ML baseline system uses single Gaussians with globally pooled
variances and is the initialization of the HCRF for further training.
The HCRF is optimized with the frame based MMI criterion using
context priors. We have a non-trivial sum in the numerator due to
the HMM states. This effect is particularly pronounced at the word
boundaries, see Sec. 4 for more details. We compare the proposed
algorithm with QProp, see Fig. 3.

6. CONCLUSIONS

We proposed an extension of the well-known GIS algorithm to hid-
den variables. It does not only apply to the MMI estimation of
HCRFs but it also includes more re ned criteria, e.g., MPE in ASR.
Hence, this generalized GIS can be considered the analog for log-
linear discriminative models of EM used for generative models. First
results suggest that the convergence is reasonably fast for bounded
feature functions (USPS) whereas it is rather slow in the case of ba-
sically unbounded feature functions (e.g. MFCC for Sietill).
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