
A MINIMUM-MEAN-SQUARE-ERROR NOISE REDUCTION ALGORITHM ON MEL-
FREQUENCY CEPSTRA FOR ROBUST SPEECH RECOGNITION 

 
Dong Yu, Li Deng, Jasha Droppo, Jian Wu, Yifan Gong, and Alex Acero 

 
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 
{dongyu; deng; jdroppo; jianwu; ygong; alexac}@microsoft.com 

 
ABSTRACT 

 
We present a non-linear feature-domain noise reduction algorithm 
based on the minimum mean square error (MMSE) criterion on 
Mel-frequency cepstra (MFCC) for environment-robust speech 
recognition. Distinguishing from the MMSE enhancement in log 
spectral amplitude proposed by Ephraim and Malah (E&M) [7], 
the new algorithm presented in this paper develops the suppression 
rule that applies to power spectral magnitude of the filter-banks’ 
outputs and to MFCC directly, making it demonstrably more 
effective in noise-robust speech recognition. The noise variance in 
the new algorithm contains a significant term resulting from 
instantaneous phase asynchrony between clean speech and mixing 
noise, missing in the E&M algorithm. Speech recognition 
experiments on the standard Aurora-3 task demonstrate a reduction 
of word error rate by 48% against the ICSLP02 baseline, by 26% 
against the cepstral mean normalization baseline, and by 13% 
against the conventional E&M log-MMSE noise suppressor. The 
new algorithm is also much more efficient than E&M noise 
suppressor since the number of the channels in the Mel-frequency 
filter bank is much smaller (23 in our case) than the number of bins 
in the FFT domain (256). The results also show that our algorithm 
performs slightly better than the ETSI AFE on the well-matched 
and mid-mismatched settings.  
 

Index Terms — MMSE Estimator, MFCC, Noise Reduction, 
Robust ASR, Speech Feature Enhancement 
 

1. INTRODUCTION 
 
It is generally held that the desirable signal domain to which noise 
reduction should be applied differs between human listening and 
automatic speech recognition (ASR). Conventional wisdom posits 
that the lower the distortion is between the enhanced speech and 
the clean speech in the domain closest to the “backend” (human 
perception or machine recognition), the better the enhancement 
performance will be. For subjective human listening noise 
reduction is often applied in the spectral-magnitude domain (e.g., 
spectral subtraction, Wiener filtering, and Ephraim/Malah spectral 
amplitude MMSE suppressor [5]). Subjective human listening 
experiments [8] show that speech enhancement becomes more 
effective when applied to the log-spectral amplitude domain [7].  

In this paper, we apply the same line of thinking to speech 
feature enhancement for ASR applications, where Mel-Frequency 
Cepstral Coefficients (MFCCs) have been used pervasively as the 
closest input representation to ASR back-ends. Specifically, we 
propose a non-linear feature-domain noise reduction algorithm 
based on the minimum mean square error (MMSE) criterion on 
MFCCs for environment-robust speech recognition. We explain 
that the problem of seeking an MMSE estimator on MFCCs can be 

reduced to seeking a log-MMSE estimator on the Mel-frequency 
filter bank’s output, which can be solved independently for each 
filter bank channel. We derive the algorithm by assigning 
uniformly distributed random phases to the real-valued filter 
bank’s outputs and assuming that the artificially generated 
complex filter bank’s outputs follow zero-mean complex normal 
distributions. We show two key differences between our new 
suppression rule and the log-MMSE spectral amplitude estimator 
proposed by Ephraim and Malah (E&M) [7]. First, our suppression 
rule is applied directly to the MFCC instead of the spectral 
amplitude. Second, the noise variance used in our algorithm has 
been derived to contain an additional term resulting from that the 
clean speech and the noise are not in phase with each other.  

Compared with our previous noise robust techniques such as 
SPLICE (stereo-based piecewise linear compensation for 
environments) [2][5], the new algorithm has several advantages. 
First, it does not require a codebook to be constructed using 
training data and thus is more robust to unseen environment and 
easier to be deployed. Second, it introduces no additional look-
ahead frame delay. Third, it is applied to the MFCC and hence can 
be easily plugged into the existing feature extraction pipeline. 
Speech recognition experiments on the Aurora-3 task demonstrate 
that our proposed algorithm has huge performance advantages over 
the E&M log-MMSE noise suppressor. Our algorithm is also much 
more efficient since the number of the channels in the mel-
frequency filter bank is usually much smaller than the number of 
bins in the FFT domain. 
      The rest of the paper is organized as follows. In Section 2, we 
formulate the MMSE estimation problem on MFCC and show how 
the problem can be reduced to the log-MMSE estimation on the 
Mel-frequency filter bank’s outputs. In Section 3, we first describe 
the development of our non-linear noise reduction algorithm in 
detail. Then, we illustrate how the parameters used in the algorithm 
are estimated with a focus on the computation of a novel variance 
term induced by the phase difference between clean speech and 
mixing noise. We describe the evaluation procedure on the Aurora-
3 task and report the experimental results in Section 4. In Section 5 
we conclude the paper. 
 

2. PROBLEM FORMULATION 
Without lack of generality, we denote ݔ  as clean speech. We 
assume that ݔ  is corrupted with independent additive noise ݊  to 
become noisy speech (ݐ)ݕ :ݕ = (ݐ)ݔ +  (1) ,(ݐ)݊
where ݐ is the time-sample index. Our goal is to find the MMSE 
estimate ܿ̂ݔ(݇)  against each separate dimension ݇  of the clean 
speech MFCC vector ܿݔ  given noisy MFCC vector ܿݕ .  

There are three reasons for choosing the dimension-wise 
instead of the full-vector MMSE criterion. First, each dimension of 
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the MFCC vector is known to be relatively independent of each 
other and hence diagonal covariance matrices are usually used in 
modeling the MFCC space in ASR. Second, the dynamic range of 
MFCC is different between different dimensions. If the MMSE 
criterion were applied to the full MFCC vector, each dimension 
would need to be weighted differently so that the error would not 
be dominated by one or two dimensions. Choosing the appropriate 
weights not only is difficult but also introduces unnecessary 
computational overhead. Third, the dimension-wise MMSE 
criterion decouples different dimensions, making the algorithm 
easier to develop and to implement.  

The solution to the MMSE problem for each element of the 
dimension-wise MFCC vectors is the conditional expectation of ܿ̂ݔ(݇) = ൟݕห݉(݇)ݔ൛ܿܧ = ܧ ൝ܽ݇ ,ܾ log݉ݔ(ܾ)ܾ อ݉ݕൡ = ܽ݇ (ܾ)ݔ൛log݉ܧܾ, ห݉ݕൟܾ , (2) 

where ܽ݇ ,ܾ  are the discrete cosine transform coefficients, ݉ݕ  and ݉ݔ  are the Mel-frequency filter bank’s output in power for the 
noisy and clean speech respectively, ܾ is the filter bank channel id. 
    The additive assumption (1) for speech-noise mixing in time 
domain gives the same relationship in frequency domain: ܻ(݂) = ܺ(݂) + ܰ(݂). (3) 

where ܻ(݂), ܺ(݂) , and ܰ(݂)  are discrete Fourier transformation 
(DFT) of noisy speech waveform ݕ, clean speech waveform ݔ, and 
noise waveform ݊. We further assume that ݉ݔ(ܾ) be independent 
of ݉ݕ(ܾ′)  ∀ܾ′ ≠ ܾ given ݉ݕ(ܾ) and thus it can be reconstructed 
solely from ݉ݕ(ܾ). Then, (2) can be further simplified to ܿ̂ݔ(݇) ≅ܽ݇ (ܾ)ݔ൛log݉ܧܾ, ห݉ݕ(ܾ)ൟܾ . (4) 

The problem is thus reduced to finding the log-MMSE estimator of 
the Mel-frequency filter bank’s output ෝ݉ݔ(ܾ) = (ܾ)ݔ൛log݉ܧ൫ݔ݁ ห݉ݕ(ܾ)ൟ൯. (5) 

There can be many different solutions to (5) based on different 
assumptions on the noise and noisy speech models. In the 
following section, we derive one of the solutions 
 

3. THE MFCC-MMSE ESTIMATOR 
At the first glance of (5), it appears that the E&M log-MMSE 
magnitude spectral suppressor could be directly applied to the filter 
bank output by converting the power spectral to the magnitude 
spectral first and then converting it back once the suppression is 
done. Our experiments on Aurora-3 showed that such a naive 
approach gave poor results (see detail in Section 4). This motivates 
a more principled approach to be described in this section. 
 
3.1 The Suppressor Rule 

To develop a rigorous approach, we construct three complex 
variables ݊ܯ ,(ܾ)ݔܯ(ܾ) and ݕܯ(ܾ) such that |ݔܯ(ܾ)| = (ܾ)ݔ݉ = 2݂|(݂)ܺ|(݂)ܾݓ , 

|(ܾ)݊ܯ| = ݉݊(ܾ) = 2|(݂)ܰ|(݂)ܾݓ,݂  

หݕܯ(ܾ)ห = (ܾ)ݕ݉ = 2݂|(݂)ܻ|(݂)ܾݓ . (6) 

where ܾݓ(݂)is the fixed b-th Mel-frequency filter’s weight for the 
frequency bin f. Many ݊ܯ ,(ܾ)ݔܯ(ܾ) and ݕܯ(ܾ) would satisfy (6), 
among which we choose the ones with uniformly distributed 
random phases ݊ߠ ,(ܾ)ݔߠ(ܾ), and ݕߠ(ܾ) (which can be considered 
as the weighted sum of the phases over all the DFT bins). Selecting 
such phases enables us to make the assumption that complex 
variables ݔܯ(ܾ)  and ݕܯ(ܾ) (ܾ)ݔܯ−  both follow the zero-mean 
complex normal distributions. 

Since ݕܯ(ܾ) contains all information there is in ݉(5) ,(ܾ)ݕ can 
be rewritten as ෝ݉ݔ(ܾ) = (ܾ)ݔ൛log݉ܧ൫ݔ݁ หݕܯ(ܾ)ൟ൯. (7) 
Following a similar approach developed in [7], we can find the 
solution to (7) as ෝ݉ݔ(ܾ) = (ܾ)ݔ൛log݉ܧ൫ݔ݁ ห݉ݕ(ܾ)ൟ൯ = ,(ܾ)ߦ൫ܩ  (8) ,(ܾ)ݕ൯݉(ܾ)ߥ

where the gain is ܩ൫ߦ(ܾ), ൯(ܾ)ߥ = 1(ܾ)ߦ + (ܾ)ߦ ݔ݁ ቊ12න ݐݐ−݁ ∞ݐ݀

(ܾ)ߥ ቋ (9) 

In (9), the quantity ߥ(ܾ) = 1(ܾ)ߦ + (ܾ)ߦ  (10) (ܾ)ߛ

is defined by the adjusted a- priori SNR for each filter bank: ߦ(ܾ) ≝ ߪ(ܾ)2ݔߪ 2݀(ܾ), (11) 

and by the adjusted a-posteriori SNR:  ߛ(ܾ) ≝ ߪ(ܾ)2ݕ݉ 2݀(ܾ) . (12) 

 Then, the MMSE estimator for the MFCC becomes ܿ̂ݔ(݇) ≅ܽ݇ (ܾ)ݔ൛log݉ܧܾ, ห݉ݕ(ܾ)ൟܾ  

= ܽ݇ ,ܾ log ቀܩ൫ߦ(ܾ), ቁܾ(ܾ)ݕ൯݉(ܾ)ߥ . (13) 

We would like to point out two essential differences between 
noise suppression rule (9) and that proposed in [7]. First, our 
suppression rule is applied to MFCC (after applying to the power 
spectral domain of the filter bank’s output) instead of to the 
magnitude spectral domain as in [7]. Second, the a priori and a 
posteriori SNRs defined in (11) and (12) are different from those 
defined in [7]. Because of the use of the filter bank, they need to be 
adjusted to include not only the noise (in the power spectral and 
not the spectral magnitude domain) variance ߪ 2݊(ܾ) =  ,{(ܾ)2݊݉}ܧ
but also the additional variance ߪ 2߮(ܾ) resulting from instantaneous 
phase differences between the clean speech and the mixing  noise. 
That is, ߪ 2݀(ܾ) ≅ ߪ 2݊(ܾ) + ߪ 2߮(ܾ), (14) 
 
3.2 Estimation of ࣌(࢈) and ࢞࣌(࢈) 
In our current implementation, the noise variance ߪ 2݊(ܾ)  is 
estimated using a minimum controlled recursive moving-average 
noise tracker similar to the one described in [1]. 2ݔߪ(ܾ) is estimated 
using the same decision-directed approach as that described in [6].  
 
3.3 Estimation of ࣐࣌  (࢈)
Inclusion and estimation of ߪ 2߮(ܾ)  are one major novelty of this 
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work, which considerably contributes to the performance gain 
shown in Section 4. Rigorous estimation is difficult and we 
developed the following approximate method (details omitted):  

ߪ 2߮(ܾ) = ܧ ⎩⎨
⎧൮ 2|ܺ(݂)||ܰ(݂)| cos߮(݂)݂ ൲2(݂)ܾݓ

⎭⎬
⎫

 

= 22݂{|(݂)ܺ|}ܧ(݂)2ܾݓ  2{|(݂)ܰ|}ܧ

≅ 2 ∑ ∑൫݂(݂)2ܾݓ ݂(݂)ܾݓ ൯2 ඨߪ(ܾ)2ݔߪ 2݊(ܾ) ߪ 2݊(ܾ) 
(15) 

in our current implementation. Note that (15) depends on ߪ 2݊(ܾ) 
and 2ݔߪ(ܾ). Therefore, ߪ 2߮(ܾ) needs to be estimated after estimating ߪ 2݊(ܾ) and 2ݔߪ(ܾ). 

. 
4. PERFORMANCE EVALUATION 

We have conducted extensive speech recognition experiments on 
the standard Aurora-3 task [5] to evaluate the performance of the 
non-linear MMSE noise reduction algorithm on MFCC described 
so far in this paper. 
 
4.1 Experimental Setup 

The Aurora-3 task consists of noisy digit recognition sub-tasks 
under realistic automobile environments. In the Aurora-3 corpus, 
each utterance is labeled as coming from either a high, low, or 
quiet noise environment, and as being recoded using  a close-talk 
microphone or a hands-free, far-field microphone.  

Based on the languages, the task can be classified into four 
separate digit recognition sub-tasks. For each language, three 
experimental settings are defined for the evaluation:  

Well-matched – Both the training and the testing set contain all 
combinations of noise environments and microphones. 

Mid-mismatch – The training set contains quiet and low noise 
data recorded using the far-field microphone, and the testing set 
contains the high noisy data recorded using the far-field 
microphone. The mismatch is mainly caused by the noise. 

High-mismatch – The training set contains close-talk data from 
all noise classes, and the testing set contains high noise and low 
noise far-field data for testing. The mismatch is caused mainly by 
channel distortion.  

All speech recognition results reported in this section use the 
HMMs trained in the manner prescribed by the scripts included 
with the Aurora-3 task. The HMMs used consist of 16-state whole-
word models for each digit in addition to the “sil” and “sp” models. 
The 39-dimenion features used in our experiments contain the 13-
dimention static MFCC features and their delta and delta-delta 
features. The parameters (such as smoothing factors and the size of 
the minimum tracking windows) used for noise tracking are similar 
to those described in [1]. 

 
4.2 Experimental Results 
 
The purpose of our experiments is to examine to what extent our 
new algorithm is effective for its designed purpose: noise 
robustness under the additive noise environment. With this goal in 
mind, we have conducted a series of experiments to compare our 
algorithm with other noise robust algorithms such as the 
conventional E&M log-MMSE magnitude spectral suppressor 
(which operates on the much more expensive DFT domain) and the 

ETSI’s advanced front end (AFE).  
In all the results reported in this section, the ICSLP02 baseline 

refers to the baseline system using the standard WI007 front-end 
(Figure 1). The AGN/CMN baseline is the system with the WI007 
frontend and a standard active gain normalization and cepstral 
mean normalization algorithm (Figure 2). In both the MFCC-
MMSE and the E&M log-MMSE systems we applied the noise 
suppression algorithms on top of the AGN/CMN baseline system 
(Figure 3 & 4). 

 

FFTy Mel-Frequency 
Filter

IDCT

My

Cy

|*|2Y |Y|2

△/△△ feature

Fig. 1: Feature extraction pipeline for ICSLP02 baseline system. 
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Fig. 2: Feature extraction pipeline for AGN/CMN baseline system. 
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Fig. 3: Feature extraction pipeline for the E&M log-MMSE 

system, where the suppressor is applied to the DFT bins. 
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Fig. 4: Feature extraction pipeline for the MFCC-MMSE system. 

 
Tables 1 and 2 summarize the average absolute recognition 

word error rate (WER) results and the relative improvements for 
the above four systems, respectively, plus the naïve 
implementation of the E&M log-MMSE algorithm for the Filter-
Bank output magnitude (labeled as “FB Output Magnitude” in the 
final column of Table 1). We observe that the new MFCC-MMSE 
approach has achieved over 48% WER reduction relative to the 
ICSLP02 baseline system, over 25% WER reduction to the 
AGN/CMN baseline system, and over 13% WER reduction to the 
conventional E&M log-MMSE algorithm while saving 
considerable computational cost (23 vs. 256 frequency channels for 
estimation). We also observe that directly applying the E&M log-
MMSE noise suppressor to the magnitude spectrum of the Mel-
frequency filter bank output gives only slight gain over the 
AGN/CMN baseline. Detailed results on each sub-tasks of our 
MFCC-MMSE noise suppressor are reported in Table 3. 
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Table 1: Summary of absolute WER in the Aurora-3 task under 

five different experimental settings 
Summary of Aurora 3 Absolute Word Error Rate  

  Well Mid High Average 
ICSLP02 Baseline 8.96% 21.96% 48.85% 23.48% 
AGN/CMN 6.87% 16.52% 31.11% 16.31% 
E&M log-MMSE 5.57% 12.79% 29.23% 14.01% 
MFCC-MMSE 5.08% 12.26% 23.26% 12.13% 
FB Output Magnitude 6.87% 15.21% 31.29% 15.89% 
 
Table 2: Summary of relative WER reduction in the Aurora-3 task  

Summary of Aurora-3: Relative Performance Improvement 

Relative to  ICSLP02 
Baseline AGN/CMN E&M log-

MMSE 
AGN/CMN 30.55% -- -- 
E&M log-MMSE 40.33% 14.08% -- 
MFCC-MMSE 48.33% 25.59% 13.41% 
 

Table 3: Detailed Aurora-3 absolute WER results under the 
MFCC-MMSE experimental setting. 

Aurora-3 Word Error Rate Using MFCC-MMSE 
  Finnish Spanish German Danish Average 
Well (x40%) 3.54% 5.90% 5.20% 5.66% 5.08% 
Mid (x35%) 15.12% 5.39% 10.67% 17.84% 12.26% 
High (x25%) 17.99% 34.77% 10.78% 29.49% 23.26% 
Overall 11.21% 12.94% 8.51% 15.88% 12.13% 
 

To further understand the effectiveness of our new algorithm, 
we have evaluated its performance against ETSI AFE with the 
results reported in Table 4. Analysis of these results shows that our 
new MFCC-MMSE approach has comparable performance on the 
well matched and mid-mismatched settings where noise distortion 
is the dominant cause of the mismatch. In fact, when counting 
errors under these two conditions only, the MFCC-MMSE system 
achieves an average of 8.43% WER, slightly low than that with the 
ETSI AFE (8.67% WER on average). Our approach, however, 
performs considerably worse than the ETSI AFE system under the 
high-mismatched setting. This is attributed mainly to the fact that 
the distortion in the high-mismatched setting is largely caused by 
channel distortion, which has not been handled in the design of our 
system but was carefully handled by the ETSI AFE.  
 

Table 4: Comparison between the MFCC-MMSE system and the 
AFE on Aurora-3. 

Aurora-3 Wrord Error Rate AFE on Aurora 3 
  Well Mid High 
ETSI AFE 4.70% 13.21% 12.75% 
MFCC-MMSE 5.08% 12.26% 23.26% 
 
 

5. SUMMARY AND CONCLUSIONS 
 
In this paper, we present a new, highly efficient non-linear noise 
reduction algorithm using the MMSE criterion in the MFCC 
domain for noise-robust ASR. We describe the algorithm and the 
parameter estimation methods, show the differences between our 
algorithm and the conventional E&M log-MMSE noise suppressor, 
and demonstrate its effectiveness in the standard Aurora-3 task.  

This new, model-free approach to MFCC feature enhancement 
and for noise-robust ASR has several key features. First, it does not 
require a codebook (unlike SPLICE) be constructed using training 
data, hence it is highly robust to general unseen acoustic 
environments and it is easy to deploy in our practical ASR system. 
Second, it is computationally efficient compared with the 
conventional E&M log-MMSE noise suppressor since the number 
of the frequency channels in the Mel-frequency filter bank is much 
smaller than the number of bins in the DFT domain. Third, it 
introduces no look-ahead frame delay. Fourth, it is designed to 
apply to filter bank’s outputs and hence can be easily plugged into 
the feature extraction pipeline of many commonly used ASR 
systems including our own. The proposed approach as developed 
so far, however, only deals with additive noises and has not been 
developed to handle channel distortions. Our current work involves 
expanding on this capability. We are also investigating the 
combination of the current algorithm, which does not rely on any 
data, with the data-driven approach (as exploited in SPLICE) to 
take advantage of the mutual strengths. 
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