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ABSTRACT

The enhancement of short-term spectra of noisy speech can be
achieved by statistical estimation of the clean speech spectral
components. We present a minimum mean-square error esti-
mator of the clean speech spectral magnitude that uses both a
parametric compression function in the estimation error cri-
terion and a parametric prior distribution for the statistical
model of the clean speech magnitude. The novel parametric
estimator has many known magnitude estimators as a special
solution and, additionally, affords estimators that combine the
beneficial properties of different known solutions. The new
estimator is evaluated in terms of segmental SNR, speech dis-
tortion, and noise suppression.

Index Terms— speech enhancement, MMSE estimation

1. INTRODUCTION

When speech signals are captured in noisy environments, en-
hancement algorithms increase the listening comfort for users
of mobile phones or hearing aids. To reduce the level of noise
in a noisy speech signal, adaptive spectral gain functions like
the Wiener filter are very effective. The spectral gain is multi-
plied with the short-time spectrum of a noisy speech signal so
that those spectral bins which are dominated by noise are at-
tenuated while spectral components of speech are ideally not
affected. The spectral gain functions are either based on opti-
mal estimators of the clean speech spectral coefficients [1, 2]
given the observed noisy spectrum or on the estimation of the
clean speech spectral magnitudes. For the estimation of the
spectral magnitudes of the clean speech, the minimum mean-
square error (MMSE) estimation with different compressive
weighting functions [3, 4, 5] or different statistical prior mod-
els of the clean speech coefficients [6, 7] have been presented.
In [8] an MMSE estimator is proposed that combines the two
aspects. However, while for the error criterion a compression
function is used, the prior of the speech spectral magnitude
is found empirically from training data. The empirical prior
was chosen as an alternative to the Gaussian model which is
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known to be an inaccurate model for spectral components of
speech [8, 1]. The combination of a variable error criterion
and a non-Gaussian speech prior yields a very general form
of the MMSE amplitude estimator. Nevertheless, due to the
empirical character of the speech prior, the estimator [8] only
exists in tabulated form and no analytic description is avail-
able.
In this paper, we present the analytic solution to anMMSE

estimator of short-time spectral magnitudes of speech in addi-
tive and uncorrelated noise that uses both a variable compres-
sion function in the error criterion and the chi-distribution as
a prior model for speech spectral magnitudes. This novel esti-
mator provides a generic solution to the speech enhancement
problem. It also affords many known estimators as special
cases.
The paper is organized as follows: In Section 2, speech

enhancement based on MMSE amplitude estimation is de-
scribed and the speech prior introduced. Section 3 gives an
analysis of the novel estimator. The evaluation of the estima-
tor is presented in Section 4.

2. MMSE ESTIMATION AND STATISTICAL MODEL

We assume that the spectrum of a noisy speech signal seg-
ment is calculated via a short-time Fourier transform resulting
in the noisy complex spectral coefficients Yk, with k the fre-
quency bin index. It is assumed here that the noisy spectrum
Yk is the sum of the clean speech spectrum Sk and the uncor-
related noise spectrum Nk, i.e. Yk = Sk + Nk. Further, Nk

is modelled as a complex Gaussian random variable and the
phase of Sk is assumed to be uniformly distributed between
−π and π as was observed in [9].
An optimal estimate Âk of the spectral amplitude Ak =

|Sk| can be derived from the minimum mean-square error
(MMSE) criterion

Âk = argmin
bAk

E
{∣∣e(Ak, Âk)

∣∣2 ∣∣ Yk, Pn(k), ξk

}
, (1)

where the expectation E {·} is conditioned on the observed
magnitude Yk, the noise power Pn(k) = E

{|Nk|2
}
in spec-

tral bin k and the a priori signal-to-noise ratio (SNR) given as
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ξk = Ps(k)/Pn(k) with Ps(k) = E
{
A2

k

}
the speech power.

The estimation error function e(Ak, Âk) = c(Ak) − c(Âk)
comprises a compression function c(·), giving a different em-
phasis on estimation errors of small amplitudes in relation to
large amplitudes. Such a non-uniform distortion measure has
proven suitable for speech [4].
The solution to (1) considering the assumptions made above

is the conditional expected value (see [8])

c(Âk) = E
{
c(Ak)

∣∣ Yk, Pn(k), ξk

}
=

∞∫
0

c(a)e−
a2

Pn(k) I0
(

2|Yk|a
Pn(k)

)
pAk

(a) da

∞∫
0

e−
a2

Pn(k) I0
(

2|Yk|a
Pn

)
pAk

(a) da

,
(2)

with I0(·) the modified Bessel function of order zero, pAk
(a)

the a priori probability density function (pdf) of Ak, and a
denoting a realization of the random variable Ak.
From the general solution (2), we obtain a specific esti-

mator by choosing pAk
(a) and c(·). Like in [6] we use the

chi pdf

pAk
(a) =

2

Γ(μ)

(
μ

Ps(k)

)μ

a2μ−1 e−
μ

Ps(k)
a2

, (3)

with Γ(·) the complete gamma function. (3) provides the
shape parameter μ to fit pAk

(a) to empirical clean speech
data or to optimize estimation results. For the compression
function we use

c(x) = xβ (4)

from [5]. This compression contains the power, the magni-
tude and the root estimator of [8]. In [5] it was shown for
μ = 1 and β → 0 that the solution (2) even approaches that
for the log–compression giving the well-known log-spectral
amplitude (LSA) estimator [4, eqn. (20)].
Substituting (3) and (4) into (2), and using [10, (6.643.2)],

[10, (9.220.2)], and [10, (9.212.1)], the estimate Âk of the
clean speech magnitude becomes

Âk = c−1(c(Âk))

=

√
ξk

μ + ξk

[
Γ(μ + β

2 )

Γ(μ)

Φ(1− μ− β
2 , 1;−νk)

Φ(1− μ, 1;−νk)

] 1
β √

Pn(k)

(5)

with c−1(·) the inverse of c(·) and Φ(a, c;x) = 1F1(a, c;x)
the confluent hypergeometric function [10, (9.210.1)]. We
have νk = γk ξk/(μ + ξk) with γk = |Yk|2/Pn(k) the a
posteriori SNR. (5) is valid for μ > 0 and μ + β/2 > 0 with
β �= 0. Note that this implies that β < 0 can be a valid choice.
The estimator (5) can be tuned by its two parameters μ and β
and yields several known estimators depending on the choice
of μ and β (see Table 1).

β μ Estimator
1 1 STSA [3, eqn. (7)]

β → 0 1 LSA [4, eqn. (20)]
β > 0 1 [5, eqn. (14)], [4, eqn. (13)]
1 μ > 0 [6, eqn. (6)], [7, eqn. (12)]
2 1 [11, eqn. (20)]

Table 1. List of magnitude estimators that are contained in (5) as
special cases.
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Fig. 1. Input-output mapping characteristics.

3. INPUT-OUTPUT MAPPING CHARACTERISTICS

In order to describe the mapping of input values to the out-
put, we use the input-output characteristics [8] defined as the
normalized clean speech spectral estimate Âk/

√
Pn(k) given

the normalized input |Yk|/
√

Pn(k) =
√

γk. This makes the
analysis independent of the absolute signal amplitudes. Espe-
cially, for Gaussian noise the mean value of noise amplitudes
will be E

{√
γk|Yk = Nk

}
=
√

π/2.
In Figure 1 the input-output mapping characteristics are

shown for several values of μ and β. The two parameters
control different aspects of the mapping characteristics.
For large input values with νk � 1, the mapping charac-

teristics can be shown with [12, (eqn. (2.17))] to asymptoti-
cally approach

Âk√
Pn(k)

∣∣∣∣
νk�1

=
ξk

μ + ξk

√
γk . (6)

For μ = 1, this is the Wiener solution. A value μ < 1 results
in a mapping with a steeper slope than that of theWiener solu-
tion (see Figure 1 top) and μ = 0 gives the identity mapping.
Note that in [8, 13] it was observed that a lesser attenuation
of large input values is an important property of clean speech
spectral estimators. Therefore, values μ < 1 give better esti-
mation results as was already shown in [7].
For |Yk| = 0, the output is

ηk =
Âk√
Pn(k)

∣∣∣∣
Yk=0

=

√
ξk

μ + ξk

[
Γ(μ + β

2 )

Γ(μ)

]1/β

. (7)
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For μ = 1 and β → 0, when the LSA estimator is asymp-
totically approached, we get ηk =

√
ξk/(1 + ξk) e−c/2, with

c = 0.5772 . . . the Euler constant [4]. From Figure 1 we can
see that (7) is the lower limit of the output indicating the de-
gree of noise suppression for given ξk. From (6) and (7) we
find that ηk can be controlled by β without influencing the
mapping characteristics for large input values (6).

4. EVALUATION

In the following evaluation, we will show that the parameters
μ and β allow to tune the novel estimator (5) in a way that
yields a better SNR improvement than the known estimators.
For the experiments, we use (5) in a speech enhancement

framework for audio applications. The sampling rate of the
system is fs = 16 kHz. The noisy signal is segmented in
half-overlapping frames of lengthM = 512 taps. Each frame
λ is weighted with a M -tap Hann-window and transformed
with a discrete Fourier transform (DFT) of length M result-
ing in the noisy spectral bins Yk(λ). An estimate P̂n(k, λ)
of the noise power for each bin k of a frame λ is obtained
by using the method from [14]. An estimate ξ̂k(λ) of the a
priori SNR is obtained from the decision-directed approach
in the form presented in [15], with parameters α = 0.98 and
10 log10(ξmin) = −25 dB. The gainGk(λ) = Âk(λ) /|Yk(λ) |
of the filter is bound between values Gmin ≤ Gk(λ) ≤ 1.
The lower value is set to 20 log10(Gmin) = −20 dB and helps
to mask musical noise [16]. The upper bound has no au-
dible effect and is used for numerical reasons: As we nor-
mally have ηk > 0 in (7), the gain function has a pole at
|Yk(λ) | = 0. The estimate Ŝk(λ) of clean speech spectral
coefficients is obtained from (5) and the noisy phase factor
ejψk(λ) = Yk(λ)/|Yk(λ) | as [17, 3]:

Ŝk(λ) = Âk(λ) ejψk(λ) . (8)

The enhanced spectrum is transformed back with the inverse
DFT and the enhanced signal is constructed using the overlap-
add method. Note that the use of the tapered Hann-window
sufficiently suppresses audible cyclic convolution effects, as
Gk(λ) is real–valued, thus having zero phase, and the extent
of the filter’s impulse response is sufficiently small.
As the confluent hypergeometric functions Φ(a, c;x) in

(5) lead to filter implementations of high numerical complex-
ity [12], a function table was used for the term that is taken to
the power of 1/β in (5). For values νk > 50, (5) is replaced
by its asymptote (6). The maximum relative error between
the exact and the tabulated or approximated value was less
than 2 percent. Note that while the estimator in [8] uses the
function tables to actually describe the mapping characteris-
tics, our approach principally allows an exact analysis using
(5), whereas the tabulated values are only used for a more ef-
ficient implementation. As for the choice of parameters, we
use β = 0.001 to approximate the LSA-case β = 0 (see [5]).
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Fig. 2. Average segmental SNR improvement, noise reduction
Rnoise, and speech amplitude distance Dampl for 12 TIMIT sentences
and different noise types. From left to right we have stationary white
and pink Gaussian noise, and babble noise.

The enhancement of noisy signals is measured in terms of
the segmental SNR, the speech amplitude distance Dampl from
[7, eqn. (26)], and the segmental noise reduction Rnoise [9].
Note that less speech distortion is indicated by lower values
of Dampl, while higher values of Rnoise indicate a better noise
reduction during speech presence.
In Figure 2, the results are shown as the average over

12 speech samples from the TIMIT database [18] for several
combinations of the parameters μ and β. The speech samples
are disturbed by different noise types at a segmental SNR of
0 dB. As both speech distortion and noise reduction are con-
sidered in the segmental SNR, the graphs for this measure
exhibit an optimum for the best trade-off. In terms of speech
distortion expressed by Dampl, lower values of β increasingly
attenuate low–energy speech components, as the range of in-
put values that are strongly attenuated is widened (see Figure
1, bottom graph). Nevertheless, this comes along with an in-
creased noise suppression Rnoise. The advantage of a steeper
mapping characteristics obtained for lower values of μ is re-
flected in lower values for Dampl. As the parameter μ also
influences the output for low input values (see (7)), lowering
μ therefore also improves Rnoise. For very low values μ = 0.3
and β = −0.5, this even results in an increase in the distor-
tion of low–energy speech components as can be seen from
the Figures for Dampl.
Informal listening reveals that for low values of μ,musical

noise is not masked any more by 20 log10(Gmin) = −20 dB.
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We find that μ = 0.5 is a good compromise between the
amount of musical noise and clarity of speech. Addition-
ally, we find that a value of β = 0.5 yields good noise re-
duction without audible speech distortions. This value also
corresponds to the optimal value for the segmental SNR im-
provement in the case of white and pink noise. As (4) with
β = 0.5 is the root–compression and as the speech amplitude
pdf (3) with μ = 0.5 is a super–Gaussian pdf, i.e. its Kurtosis
is higher than that of a Gaussian process, we refer to the esti-
mator as super–Gaussian amplitude root (SuGAR) estimator.
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Fig. 3. Averages of segmental SNR improvement, speech ampli-
tude distance Dampl, and noise reduction Rnoise for 12 TIMIT sen-
tences and stationary white Gaussian noise at different input seg-
mental SNR. Pink and babble noise yield the same relative results.

In Figure 3, we compare the SuGAR estimator with three
well-known estimators for different noise levels. The SuGAR
estimator yields a speech distortion as low as the short-time
spectral amplitude (STSA) estimator [3, eqn. (7)]. At the
same time, it reduces the noise level as well as the LSA es-
timator [4, eqn. (20)]. For the combined measure, i.e. the
segmental SNR improvement, we find that the SuGAR es-
timator is thus superior by about 0.5 dB. The Wiener filter
Âk = ξk/(1 + ξk)|Yk| achieves the highest noise reduction,
as its mapping characteristics is not limited by ηk.

5. CONCLUSION

In this paper we have presented a novel MMSE estimator of
speech spectral amplitudes for speech enhancement in noisy
environments. The estimator can be varied in its estimation
error function and in the shape of the speech prior. This re-
sults in an estimator that offers two parameters for an op-
timization in terms of musical noise, speech distortion and
noise reduction. In the evaluation, we found that the parame-
ter values μ = 0.5 and β = 0.5 give a good trade-off between
these aspects for high input noise levels. This combination of
parameters cannot be realized with any of the estimators in
Table 1.
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