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ABSTRACT

Identification of prosodic phenomena is of first importance in
prosodic analysis and modeling. In this paper, we introduce a
new method for automatic prosodic phenomena labelling. The au-
thors set their approach of prosodic phenomena in the framework
of prominence. The proposed method for automatic prominence
labelling is based on well-known machine learning techniques in
a three step procedure: i) a feature extraction step in which we
propose a framework for systematic and multi-level speech acoustic
feature extraction, ii) a feature selection step for identifying the more
relevant prominence acoustic correlates, and iii) a modelling step in
which a gaussian mixture model is used for predicting prominence.
This model shows robust performance on read speech (84%).

Index Terms— Prosody, prominence, acoustic correlates, fea-
ture selection, classification, gaussian mixture model

1. INTRODUCTION

The identification of prosodic phenomena is an essential task in the
analysis of prosody as well as for its modeling in the context of text-
to-speech systems. Understanding acoustic correlates of these phe-
nomena in order to automatically detect them from speech is of great
help for prosodic models. Recent automatic prosodic annotation re-
search has focused on prominence instead of accent [1, 2, 3]. In
this paper, we present a prominence identification method based on
a statistical model that enables the automatic emergence of acous-
tic correlates of prominence and then their automatic classification.
This paper is organized as follows: firstly, we define the notion of
prominence and how this is favorable to the concept of accent. In
the second section, we clarify the protocol for the manual annotation
of a reference corpus. In the third section, we explain the proba-
bilistic framework based on well-known pattern matching methods:
feature extraction, feature selection, and bootstrap learning method
for prominence modeling with a gaussian mixture model.

2. WHAT IS PROMINENCE?

The transcription of prosodic phenomena is usually carried out us-
ing the notion of accentuation. Several systems for the transcription
of prosody (ToBI [4] and RFC [5] for English annotation; INTSINT
[6, 7] and [8] for French annotation) are based on this notion. This
strategy takes a priori theoretical knowledge for granted and sup-
poses an already-known phonological representation as well as its
acoustic correlates and the associated prototypes. This definition of
prosodic phenomena has several drawbacks: firstly, it supposes that
the phonological system is already known, meaning their acoustic

NP P Total

NP 3385 543 3928
P 707 1670 2377

Total 4092 2213

Table 1. Confusion matrix for P/NP decision task

correlates, their type and their associated function are known. How-
ever, such phonological representations are not unanimous and the
resulting annotations show large interindividual variations that con-
tradict the strength of these models [9]. Recent studies have favored
the notion of prominence over that of accent. By prominence, we
refer to the definition stated in [10]: “prominence is the property by
which linguistic units are perceived as standing out from their en-
vironment”. In this paper, we will use the methodology defined in
[3]: prominence is a perceptive phenomena that does not refer to
a phonological system and of which one does not presuppose the
acoustic correlates, nor the arrangement of the spoken chain. The
considered prominent unit here is the syllable.

3. PROMINENCE ANNOTATION

Prominence being a perceptive phenomenon, the first step of its mod-
eling is the creation of a reference corpus based on a manual an-
notation. We have defined the following annotation protocol: two
non-specialist individuals were simultaneously annotating a single
speaker corpus of 466 read sentences containing 6305 syllables in
sentences ranging from 2 to 66 syllables, with an average and stan-
dard deviation of 13.5 and 9.5 syllables. The annotation task was
defined as follows: in each sentence, subjects were asked to note
the group of syllables “P” for prominent or “NP” for non-prominent.
Subjects could listen to each sentence as many times as they wished
and using different temporal scales before making their decision. We
present in table 1 the confusion matrix between the two annotators.

We define the agreement measure as being the mean of promi-
nent and non-prominent f-measure. This measure i) gives compro-
mise on recall and accuracy measures and ii) neutralizes the datas
proportion effect (roughly 64% non-prominent and 36% prominent
syllables). The result demonstrates agreement in discriminating
prominent / non-prominent syllables (78.6% mean f-measure) and
validates the concept of prominence as a robust perceptive correlate
for a prosodic phenomena annotation task. Only syllables which
show agreement during annotation were set as prominent for the rest
of the paper.
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4. ACOUSTIC CORRELATES OF PROMINENCE

Recent research shows that prosodic phenomena result from the in-
teractions of acoustic cues that are more complex than pitch and du-
ration. Local speech rate [11], loudness [2], and subbands energy
[12] should be taken into consideration for such phenomena analy-
sis. These studies indicate that prosodic acoustic correlates should
not be restricted a priori. At the same time, prominence detection
methods focusing on the search of new acoustic correlates are still
based on arbitrary feature subsets: f0 and duration [3]; f0, duration
and energy [1]; f0, phone duration, loudness, aperiodicity and spec-
tral slope [2], and f0, duration and subbands energy [12]. This sec-
tion introduces a systematic framework for the extraction of features
with the goal of determining the acoustic correlates of prominence
without a priori knowledge.

4.1. Methodology for acoustic features extraction

We propose to define a systematic framework for the description
of speech acoustic properties as follows: i) statement of primitive
acoustic features, ii) measurement of characteristic values for each
feature over a given syllable, and iii) comparison of the considered
syllable features according to different surrounding syllables tempo-
ral horizon.

4.1.1. Primitive acoustic features

The first step lies in the choice of the speech primitive acoustic
features computed from the signal: pitch (fundamental frequency
or f0), duration features (syllable duration, nucleus duration, local
speech rate [11] , intensity (energy and loudness), and spectral fea-
tures (voiced/unvoiced cutoff frequency, spectral centroid, spectral
slope, specific loudness).

4.1.2. Definition of characteristic values

The second step consists of defining the measurements that enable
the description of these features over a given temporal segment - here
the syllable. We defined three distinct groups of measurement:

• global characteristics: maximum value, minimum value, mean
value, value sumation over unit,

• dynamic characteristics which give rough information on feature
movement in the considered temporal segment: range and start to
end value difference,

• shape features: first and second polynomial approximation, legen-
dre polynomial approximation, 3rd order splines, hu moment and
zernike moment). The last two features are derived from image
shape analysis and have been added for their property of scale in-
variance, which appears to be convenient for prosodic shape clus-
tering.

4.1.3. Analysis of multi-level features

As we have said previously, prominence is not only defined by intrin-
sic properties. It is essentially characterized as a salience in relation
to syllables that surround it. Today, the temporal horizon of promi-
nence processing has not been defined in publications. We suggest to
heuristically define different temporal horizons for the comparison
of acoustic data relevant for prominence detection. We have orga-
nized these temporal horizons into a hierarchy from the smallest to
the largest. The characteristic values calculated over a given syllable
segment are compared to those of: i) adjacent syllables (previous,

following, and mean of both previous and following), ii) accentual
group including the current syllable (excluding itself), iii) prosodic
group including the current syllable (excluding itself), and iv) a sen-
tence including the current syllable (excluding itself). We define
the accentual group as being the segment between two consecutive
prominences and the prosodic group as a set of accentual group fol-
lowed by a silence. The accentual group was only considerd during
the feature selection step where prominence annotation were avail-
able; it was set equal to the prosodic group when such information
were not available. Such multi-level comparisons are illustrated in
Figure 1 for fundamental frequency.

4.2. Acoustic correlates of prominence with a feature selection
algorithm

Our feature extraction protocol results in the extraction of 1490 fea-
tures. These features are obviously not all of equal importance ac-
cording to prominence. We therefore propose to find the subset of
features that best explain prominence phenomena. Our strategy for
identifying these features from the complete feature set (as defined
in the previous section) is based on a feature selection method. The
goal of feature selection methods is basically to derive an optimal
subset of features from an initial set following a given criterion.

The proposed method is based on Inertia Ratio Maximization
using Feature Space Projection [13]. This method is based on iter-
atively finding the feature that maximizes the Inertia Ratio and then
projecting the data orthogonally to this feature. Let K be the total
number of classes - here 2, prominent and non-prominent -, Nk the
number of total feature vectors accounting for the training data from
class k and N the total number of feature vectors. Let Xi,nk be the
nk-th feature vector along dimension i from the class k, mi,k and mi

respectively the mean of the vectors of the class k (Xi,nk )1<i<Nk

and the mean of all training vectors (Xi,nk )1<i<Nk,1<k<K .

The Inertia Ratio is defined as the ratio of the Between-class-
inertia Bi to the average radius of the scatter of all classes Ri:

ri =
Bi

Ri
=

PK
k=1

Nk
N
‖mi,k −mi‖

PK
k=1(

1
Nk

PNk
nk=1 ‖xi,nk −mi,k‖)

(1)

The method is iterative: at each step, the selected feature iopt is
the one which maximizes the Inertia Ratio. Then features are orthog-
onally projected along the iopt feature. This projection step ensure
non-redundancy in the selected features subset. Before computing
feature selection, feature vectors were first normalized according to
their standard deviation over the class k. This treatment normalizes
distance measures during the feature selection procedure.

In Table 2, we summarize the 10 most relevant prominence
acoustic features in order of relevance. The main relevant features
of prominence are: duration features (syllable duration, local speech
rate and nucleus duration), pitch feature (f0), and spectral features
(specific loudness). This result does not validate results for loudness
predominance [2] in case of french prominence. Secondly, it indi-
cates that prominence perception results from a complex interaction
of features: this phenomen involves absolute features as well as
relative features over different temporal horizons (previous syllable,
next syllable, accentual group), as well as shape features. It can be
somewhat surprising that shape features do not appear there, when
f0 shape is expected to be a relevant feature for prominence identi-
fication. This could be explained for two reasons: i) f0 shape is not
relevant for prominence identification, ii) the shape representations
chosen here are not able to catch what distinguish prominent from
prominent f0 shape. This remains to be investigated.
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Fig. 1. Comparison of fundamental frequency local maxima over several temporal horizons: the local maxima over syllable is compared with
local maxima over adjacent syllables and parent prosodic group.

(S: Syllable segment, GA: Accentual Group and GP: Prosodic Group.)

Feature name ri

duration 37.46
f0 mean / around f0 mean 5.81

nucleus duration 4.65
spec loud 1 mean / next spec loud 1 mean 1.68

spec loud 18 mean / prev spec loud 18 mean 1.36
lsr min / ag lsr min 1.32

lsr curve 0.90
lsr mean / around syl lsr mean 0.59

energy mean 0.51
lsr slope 0.40

Table 2. Selectionned features according to IRMFSP with respective
inertia ratio. For clarity, spec loud = specific loudness with respec-
tive band, lsr = local speech rate. When not mentionned the temporal
horizon is the syllable; ag is the accentual group

5. PROMINENCE MODEL

Once the most relevant acoustic correlates on the reference corpus
have been determined, we need to model the prominent and non-
prominent classes for class prediction. We chose the well-known
Gaussian mixture model (GMM) for data modeling.

5.1. Gaussian mixture model

For each prominent and non-prominent class, the distribution of the
P-dimensional feature vectors is modeled by a Gaussian mixture
density. Then for a given feature vector x, the mixture density for
class k is defined as:

P (x|k) =

MX

i=1

ωi
kbi

k(x) (2)

where the weighting factors ωi
k are positive scalars satisfyingPM

i=1 ωi
k = 1. The density is then a weighted linear combina-

tion of M gaussian densities bi
k with mean vector μi

k and covariance
matrix Σk

i . The model parameters θk = {μi
k; Σi

k; ωi
k}i=1,...,M are

estimated with the Expectation-Maximization (EM) algorithm [14].
Classification is then made using the Maximum a posteriori Proba-
bility (MAP) decision rule. Models were trained with the first 100
features issued from the preceding feature selection step (section 4).

5.2. Learning procedure

Our proposed learning method is a two-step method: in a first su-
pervised step, model parameters θk,0 are estimated on a reference
corpus for the prominent and non-prominent classes. These param-
eters are used as initialization in an iterative unsupervised predic-
tion/learning procedure. Given an iteration i of the method, a class
label sequence is first estimated according to the MAP decision with
the previous models θi−1 = {θj,i−1}j=1,...,K . Then, model param-
eters are reestimated for each class k according to the predicted class
label sequence with initialisation model θk,i−1 and prior probability
equal to posterior probability of the θk,i−1 model. This reestimation
of the model parameters gives the model θi. Iteration is computed
until model convergence.

For this procedure we have built three corpora for model initial-
ization, learning, and validation steps. Firstly, the reference corpus
has been equally split into an initialization corpus and a validation
corpus.Secondly, a non-annotated corpus was used for the unsuper-
vised model learning step. This last corpus contains 69688 syllables
distributed into 3615 sentences from 2 to 74 syllables with a mean
and standard deviation respectively of 19 and 9 syllables.

We define the performance measure as the mean of prominence
and non-prominence fmeasure - this for the same reasons that stated
in Section 3.

Initialization and validation corpora have both been used for per-
formance measures: the perfomance on initialization corpus indi-
cates the learning ability of our model, whereas performance on the
validation corpus indicates generalization ability. The performance
measure is computed at each step of the learning procedure. Dif-
ferent mixture componants have been tested on the same procedure
from 2 to 16 components; as well as different learning corpus sizes
equally spaced from 20% to 100% of the whole corpus. Finally, ini-
tialization and validation corpora were inverted in a cross-validation
procedure.
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Fig. 2. Mean performance in prominence detection as a function of
mixtures component. The mean was computed on the performance
according to data ratio in learning corpus.
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Fig. 3. Evolution of mean performance during unsupervised learn-
ing. In plain line, mean recall on initialization corpus and in broken
line, mean recall on validation corpus

5.3. Results and discussion

Figure 2 summarizes our model mean performance results. Our
model has an overall mean performance of 83% on the initialization
corpus and 80% on the validation corpus. Maximum performace
is of 89% on the validation corpus, which is encouraging result.
The optimal model was found to be a 6 components mixture with
84% mean generalization performance and 89% maximum general-
ization performance. Then the performance decreases with model
order as the model starts to overfit data and loses generalization
ability. Figure 3 presents an example of the evolution of perfor-
mance as a function of the iteration step during unsupervised learn-
ing. The model improves generalization performance since learning
performance decreases. This means that i) the model is learning
prominence structure on the unknown dataset and ii) the model is
learning general prominence characteristics instead of corpus depen-
dant ones. The cross-validation procedure gives comparable perfor-
mances with 85% on the initialization corpus and 82% on the valida-
tion corpus. This means that the learning procedure is robust since
model performance does not depend on the initialization dataset.

6. CONCLUSION AND FUTURE WORKS

We have shown with a feature selection algorithm that prominence
phenoma results from a complex interaction of acoustic correlates.

Our proposed model for automatic prominence prediction shows
good and robust performances. In the feature selection step, it could
be expected that prominence relies on multiple and specific acoustic
cues which define the so-called prominence type. This stated, the
feature selection should account for such type characteristics by pre-
processing the prominence class with clustering methods or directly
with unsupervised feature selection methods. In the modelling step,
the choice of both feature number and classifier for detection were
arbitrary set. In future research, we are interested in i) investigating
the effect of both feature number and classifier type on the detection
performance in order to estimate an optimal model for prominence
detection, ii) modelling acoustic prominence type with clustering
methods, iii) defining a prominence strengh measure that would be
used for prosody modeling and prediction from text structure.
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