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ABSTRACT

A top-down task-dependent model guides attention to likely target
locations in cluttered scenes. Here, a novel biologically plausible
top-down auditory attention model is presented to model such task-
dependent influences on a given task. First, multi-scale features are
extracted based on the processing stages in the central auditory sys-
tem, and converted to low-level auditory “gist” features. These fea-
tures capture rough information about the overall scene. Then, the
top-down model learns the mapping between auditory gist features
and the scene categories. The proposed top-down attention model is
tested with prominent syllable detection task in speech. When tested
on broadcast news-style read speech using the BU Radio News Cor-
pus, the model achieves 85.8% prominence detection accuracy at
syllable level. The results compare well to the reported human per-
formance on this task.

Index Terms— auditory attention, auditory gist, prominence
detection, stress detection, accent.

1. INTRODUCTION

The nervous system is exposed to tremendous amount of sensory
stimuli, but the brain cannot fully process all stimuli at once. A
neural mechanism exists that selects a subset of available sensory
information before fully processing it [1, 2]. This selection is a com-
bination of rapid bottom-up (task-independent) attention, as well as
slower top-down (task dependent) attention [1]. First, a stimulus-
driven bottom-up process of the whole scene attracts attention to-
wards conspicuous or salient locations in an unconscious manner.
Then, the top-down processing shifts the attention voluntarily to-
wards locations of cognitive interest. Only the selected location is
allowed to progress through the cortical hierarchy for high-level pro-
cessing to analyze the details [2].

The bottom-up saliency-driven attention detects the objects that
perceptually stand out of a scene by significantly differing from their
neighbors. For instance, consider detection of a short tone burst in
silent/noisy background. However, the top-down task-relevant pro-
cess uses prior knowledge and learned past expertise to focus at-
tention on the target locations in a scene. For example in vision, it
was shown that gaze patterns depend on the task performed while
viewing the same scene [3]. The gaze of the observer fell on faces
when estimating the people’s age, but fell on clothing when estimat-
ing the people’s material conditions. Since vision and audition have
similar neural processing stages and perceptual behavior [4, 5], one
can expect similar task-dependent influences in audition, as well.
For example, in a cocktail party problem setting, the attention of the
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subject may shift to the speech sound if the task is “who is speak-
ing, what?”, while the attention may shift to the music if the task is
“which instruments are being played?”.

As stated previously, the task-independent bottom-up attention
finds the locations where there is a target/source that pops-out per-
ceptually. For example, in our previous work [6], the proposed
bottom-up auditory attention model could detect prominent syllables
in speech. However, when humans are asked to find the prominent
(stressed) syllable, they also use their prior task-relevant knowledge
to pick among the conspicuous locations. The motivation for this
work is to analyze the effect of top-down task-dependent influences
on the auditory attention for a given task.

The top-down model proposed here is based on the “gist” phe-
nomenon commonly studied in vision. Gist processing is a pre-
attentive process and guides attention to focus into particular sub-
set of stimuli locations to analyze the details of the target locations
[2, 5]. The gist of a scene is captured by humans rapidly within a
few hundred milliseconds of stimulus onset, and describes the type
and overall properties of the scene. For example, after very brief ex-
posure of a scene, a subject can report general attributes of the scene,
i.e., whether it was indoors, outdoors, kitchen, street traffic etc. In
[7], a computational model that captures the gist of an image into a
low-level signature vector is proposed, and used for classification of
outdoor scenes. In [5], a review of gist perception is presented, and
it is argued that gist perception also exists in audition.

In this paper, we propose a novel biologically plausible top-
down model which guides attention during acoustical search for a
target. The feature extraction is accomplished by sharing the same
front-end with the bottom-up auditory attention model proposed in
[6], since it is based on the processing stages in the primary auditory
cortex. First, an auditory spectrum of the sound is computed based
on early stages of human auditory system. This two-dimensional
(2D) time-frequency spectrum is akin to an image of a scene in vi-
sion. Then, multi-scale features are extracted from the spectrum
based on the processing stages in the central auditory system, and
converted to low-level auditory gist features. Finally, by accumu-
lating the statistics of the gist features, the top-down model learns to
associate a given gist feature set with likely scene categories, i.e., for
the current task, scene categories are prominent vs. non-prominent
syllables. It should be noted that the proposed top-down auditory
attention model is a generic model with a variety of applications,
i.e., speaker recognition, scene change detection, context recogni-
tion etc. Here, we apply it to the prominent syllable detection prob-
lem, and the experimental results show that the proposed model de-
tects prominent syllables in speech with 85.8% accuracy, and pro-
vides approximately 10% absolute improvement over using just the
bottom-up attention model.
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Fig. 1. Top-down task-dependent model structure

The paper is organized as follows: the top-down auditory at-
tention model with gist feature extraction is explained in Section 2.
This is followed by the details of experiments in Section 3, and the
results in Section 4. The conclusions and future work are presented
in Section 5.

2. TOP-DOWN TASK-DEPENDENT MODEL

The top-down model with gist features is illustrated in Fig. 1. To
learn top-down task-dependent influences on a given task, we split
the data into training and test sets. In the training phase, gist features
fi are extracted from the scenes in the training set, and compiled
together with their corresponding class categories C;. Here, the term
“scene” represents an audio segment of duration W. The details
of selecting an appropriate window duration W will be discussed
later. The features are stacked and passed through a “learner” (a
machine learning algorithm) to discover the mapping between gist
feature vectors and class categories. In the testing phase, scenes that
are not seen in the training phase are used to test the performance
of the top-down model. For a given test sample, the gist of scene
is extracted, and passed to the learned map to generate its top-down
prediction class category C. In Sections 2.1 and 2.2, the gist feature
extraction is explained in detail.

2.1. Multi-Scale Feature Extraction

The structure of the gist feature extraction is presented in Fig. 2. As
stated earlier, the starting point of this model is our previously pro-
posed bottom-up auditory attention model [6]. Hence, the bottom-up
and top-down models share a common front-end: multi-scale fea-
ture extraction module and center-surround operation which finally
yields feature maps. This also saves in some computational cost in
case the bottom-up and top-down models are combined in the future.
The multi-scale feature extraction will be explained briefly here, one
may refer [6] for details.

The feature extraction is biologically inspired, and it mimics the
processing stages in the early and central auditory systems. First, the
auditory spectrum of the sound is estimated using an early auditory
(EA) system model. The EA model used here consists of cochlear
filtering, inner hair cell, and lateral inhibitory stages mimicking the
process from basilar membrane to the cochlear nucleus in the audi-
tory system [4]. The cochlear filtering is implemented using a bank
of 128 overlapping constant-Q asymmetric band-pass filters. For
analysis, audio frames of 20 milliseconds (ms) with 10 ms shift are
used, i.e. each 10 ms audio frame is represented by a 128 dimen-
sional vector.
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Fig. 2. Auditory gist feature extraction

The output of the EA model is an auditory spectrum with time
and frequency axes.The spectrum is analyzed by extracting a set of
multi-scale features which consists of intensity (I), frequency con-
trast (F), temporal contrast (T') and orientation (O) feature chan-
nels. They are extracted using 2D spectro-temporal receptive fil-
ters mimicking the analysis stages in the primary auditory cortex.
Each of the receptive filters (RF) simulated for feature extraction
are illustrated with gray scaled images in Fig. 2 next to its corre-
sponding feature channel. The excitation phase, and inhibition phase
are shown with white and black color, respectively. For example,
the frequency contrast filter corresponds to RF with an excitatory
phase and simultaneous symmetric inhibitory side bands. The RF
for generating frequency contrast, temporal contrast and orientation
features are implemented using 2D Gabor filters with angles (6) 0°,
90°, {45°,135°}, respectively. The RF for intensity feature is im-
plemented using a 2D Gaussian kernel. The multi-scale features are
obtained using a dyadic pyramid: the input spectrum is filtered, and
decimated by a factor of two, and this is repeated. Finally, eight
scales are created (if the scene duration W is large enough; other-
wise there are fewer scales), yielding size reduction factors ranging
from 1:1 (scale 1) to 1:128 (scale 8). For details of the feature ex-
traction and filters used, one may refer to [6].

After extracting features at multiple scales, the model computes
“center-surround” differences akin to the properties of local cortical
inhibition. It is simulated by across scale subtraction (&) between



a “center” fine scale ¢ and a “surround” coarser scale s yielding a
feature map M(c, s) :

M(c, s) = |M(c) o M(s)|, Me{l,F,T,O¢} €))

The across scale subtraction between two scales is computed by
interpolation to the finer scale and pointwise subtraction. Here,
c = {2,3,4}, s = ¢+ 0 with §e{3,4} are used, which results in
six feature maps for each feature channel, except orientation, when
features are extracted at eight scales. The orientational channel has
twelve feature maps since two angles of = {45°,135°} are used.

2.2. Gist Features

Processing of the gist is rapid, and the gist of a scene describes the
overall properties of the scene [7, 5]. The gist extraction algorithm
is similar to the one proposed in [7] for vision. A gist vector is
extracted from the feature maps of I, F, T', O such that it covers the
whole scene at low resolution. A feature map is divided into m by n
grid of subregions, and the mean of each subregion is computed to
capture rough information about the region, which results in a gist
vector with length m x n. For a feature map M; with height h and
width w, the computation of gist features can be written as:
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An example of gist feature extraction with m = 4,n = 5 is shown
in Fig. 2. After extracting a gist vector from each feature map,
we obtain the cumulative gist vector by augmenting them. Then,
principal component analysis (PCA) is used to reduce the dimension
to make the machine learning more practical.

Averaging operation is the simplest neuron computation. Other
second-order statistics such as variance may also provide additional
information, but for our application we found that there was no ap-
preciable benefit of using it.

3. EXPERIMENTS

To test our top-down task dependent model with gist features, the
Boston University Radio News Corpus (BU-RNC) database [8] was
used in the experiments. The BU-RNC is a broadcast news-style
read speech corpus that consists of speech from 3 female and 3 male
speakers, totaling about 3 hours of acoustic data. A significant por-
tion of the data has been manually labelled with prosodic tags. The
database also contains the orthography corresponding to each spo-
ken utterance together with time alignment information at the phone
and word level. To obtain the syllable level time-alignment informa-
tion, the orthographic transcriptions are syllabified using the rules
of English phonology [9]. We mapped all pitch accent types (H*,
L*, L*+H, etc..) to a single stress label, reducing the task to a two-
class problem. Hence, the syllables annotated with any type of pitch
accent were labelled “prominent”, and otherwise “non-prominent”.
The database consists of approximately 49,000 syllables, and the
prominent syllable fraction is 34.3% (chance level). We chose this
database for two main reasons: i) syllables are stress labelled based
on human perception ii) since it carries labelled data, it helps us to
train the top-down model in a supervised fashion.

The learner in Fig. 1 is implemented using a 3-layer neural net-
work (MLP) with D inputs, (D + N)/2 hidden nodes and N output
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nodes, where D is the length of gist feature vector after PCA dimen-
sion reduction, and N = 2 since this is a two-class problem. The
output of the neural network can be treated as class posterior prob-
ability, and the class with higher probability is assumed to be the
top-down prediction. The reason for using neural network classifier
is that they are biologically well motivated. In addition to the neural
network learner, a nonparametric k-nearest neighbor (k-NN) classi-
fier (k = 5) was also used. All of the experimental results presented
here are estimated using the average of 10-fold cross-validation. For
each cross-validation, 90% of the data were retained for the train-
ing set and remaining 10% was used for testing. Also, during MLP
training 10% of the training data was separated as validation set to
be used as stopping criteria during training.

3.1. Defining the “Scene” and Its Duration

A scene is generated for each syllable in the database. The scenes are
produced by extracting the sound around each syllable with an anal-
ysis window that centers on the syllable. To design the scene window
duration W, we derived the statistics of the database to get an esti-
mate. It is found that the mean syllable duration is approximately
0.2 s with 0.1 s standard deviation, and the maximum duration is 1.4
s for the BU-RNC database.

The role of scene duration W was investigated in the experi-
ments. The duration is varied starting from 0.2 s, considering only
the syllable itself, up to 1.4 s considering the neighboring syllables.
In order to get full temporal resolution while analyzing the scene du-
ration, at the gist feature extraction stage each feature map is divided
into (m,n) = (1, w) grids, where w is the width of the feature map.
The dimension of the gist feature vector, D, changes with varying
scene duration. For instance, when W = 0.6 s, the EA model out-
puts a 128 x 60 dimensional image. Then, we can extract features up
to 6 scales (instead of 8 scales), which enables the center-surround
operation at scales (¢ — s) = {(2 —5),(2 —6),(3 — 6)}. When
(m,n) = (1, w), the dimension of the gist vector for each feature is
(30 4+ 30 4 15) = 75 (since w is 30 at scale-2 and 15 at scale-3),
finally resulting in a cumulative gist vector of (75 * 5) = 375 di-
mension (one feature set for each I, F,T" and two sets for Oy since
6 = {45°,135°}, total 5 sets). Finally, the dimension is reduced to
68 with PCA while retaining 99% of the variance.

4. RESULTS

The performance of k-NN and MLP classifiers as a function of scene
duration is shown in Fig. 3. We can conclude that the performance
depends on scene duration when k-NN algorithm is used as learner.
It performs poorly for both short (W < 0.4 s) and long scene du-
rations (W > 0.8 s). The best performance achieved with k-NN
classifier is when W = 0.5 s. In contrast to the k-NN algorithm, the
MLP still learns the mapping between the scenes and the prominence
classes even when the scene duration is large, at the expense of com-
putation (when the scene duration is large, gist feature dimension
gets larger requiring a larger neural network for training). It can be
observed from Fig. 3 that the accuracy does not change significantly
for varying scene durations with MLP classifier, except for W = 0.2
s. The best performance achieved with MLP is when W = 0.8 s.
Both of the MLP and the k-NN classifiers perform poorly for short
scenes ( W < 0.5 s). This essentially indicates that the prominence
of a syllable is affected by its neighboring syllables.

In Table 1, some of the results are detailed with accuracy (Acc.),
precision (Pr), recall (Re) and F-score (F-sc) values, together with
scene duration W and gist feature dimension D after PCA. The re-
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Fig. 3. Performance of the MLP and the k-NN learners for varying
scene durations (Acc: Accuracy, F-sc: F-score)

sults obtained with unsupervised bottom-up (BU) attention model
from [6] are also summarized in Table 1 for comparison purpose.
In the prominence syllable detection task, the best performance
achieved is 85.1% accuracy with an F-score= 0.78, and obtained
with the MLP when W = 0.8 s.

The effect of the grid size on the performance is examined. The
resolution in the frequency domain is increased by a factor of four
while reducing the temporal resolution so that the dimension stays
compact. At the gist feature extraction stage each feature map is di-
vided into (m, n) = (4, 5) grids, resulting in a (4 * 5) = 20 dimen-
sional gist vector. As in the previous example, when W = 0.6 s, it
generates a 300 dimensional cumulative gist feature vector. The di-
mension is reduced to 122 with PCA while still retaining 99% of the
variance. For all scene durations, it results in a larger dimensional
gist feature vector compared to (m,n) = (1,w). This indicates
that the gist features obtained with (m,n) = (4, 5) carries more di-
verse information about the scene compared to the one obtained with
(m,n) = (1,w). In Table 2, results obtained with (m,n) = (4,5)
for varying scene durations are reported using the MLP. The best
performance achieved with (m,n) = (4, 5) is 85.8% accuracy with
an F-score= 0.79, and obtained when W = 0.8 s using the MLP
learner. The top-down model provides approximately 10% absolute
improvement over the bottom-up model. The results also compare
well against the previously reported performance levels with the BU-
RNC database, e.g. a supervised model obtained 76.6% accuracy
using only acoustical features, and 83.9% accuracy using acoustical
and syntactical features in [10].

5. CONCLUSION AND FUTURE WORK

In this paper, a task-dependent top-down auditory attention model
is presented. A set of multi-scale auditory features are extracted
in parallel from the auditory spectrum of the sound, and converted
into low-level auditory gist features that capture the essence of a
scene. Using a machine learning algorithm, the model learns the
mapping between the gist features and the acoustical scene. The
model was demonstrated to successfully detect prominent syllables
in read speech with up to 85.8% accuracy. These results are encour-
aging given that the average inter-transcriber agreement for manual
annotators is 80-85% for stress labelling [8].

It has been experimentally seen that the prominence of sylla-
bles is affected by the neighboring syllables. Considering the perfor-
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Table 1. Prominent Syllable Detection Performance with (m,n) =

(L, w)
Learner | W (s) | D Acc. Pr. Re. | F-sc
BU 0.6 NA | 75.9% | 0.64 | 0.79 | 0.71
k-NN 0.5 56 | 82.0% | 0.76 | 0.7 | 0.73
MLP 0.5 56 | 84.3% | 0.80 | 0.73 | 0.76
MLP 0.8 116 | 85.1% | 0.80 | 0.75 | 0.78

Table 2. Prominent Syllable Detection Performance with (m,n) =

(4,5) using MLP

W) | D Acc. Pr. Re. | F-sc.
0.4 110 | 84.9% | 0.81 | 0.74 | 0.77
0.6 122 | 85.6% | 0.81 | 0.76 | 0.79
0.8 190 | 85.8% | 0.81 | 0.77 | 0.79

mance and the computational cost, it may be reasonable to have an
analysis window duration of 0.5-0.6 s for the prominent syllable de-
tection task. A finer grid at the gist feature extraction stage increases
the resolution and the computational cost, since it produces larger
dimensional feature vectors. A suitable balance between resolution
and the cost based on the chosen application needs to be found.

The top-down information that comes with language has not
been considered in this work. As a part of our future work, we
would like to incorporate top-down influences of lexical and syn-
tactic knowledge into the proposed model. Also, the presented top-
down model can be combined with the bottom-up auditory attention
model such that the combined model makes a selection among the
perceptually salient locations obtained from the bottom-up model.

The top-down auditory attention model proposed here is not lim-
ited to prosody labelling. It can be used in other spoken language
processing tasks and general computational auditory scene analysis
applications to classify ambient scenes, as well.
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