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ABSTRACT

In this paper, the high-level prosodic patterns of prosodic word 
(PW), prosodic phrase (PPh) and breath group/prosodic phrase 
group (BG/PG) for syllable pitch-level and duration are explored 
using an automatic joint prosody labeling and modeling method. 
Experimental results on a treebank speech corpus showed that the 
explored high-level prosodic patterns not only matched well with 
our a priori knowledge about Mandarin prosody, but also 
conformed well to other previous studies. They can therefore be 
integrated to form a meaningful Mandarin prosody hierarchy. 

Index Terms— speech processing, prosody modeling, Mandarin 
prosody 

1. INTRODUCTION 
Prosody modeling is an important research topic for text-to-speech 
(TTS). Its task is to explore the hierarchical structure of the 
prosody of a language. For Mandarin speech, the conventional 
“…small ripples riding on large waves” theory [1] suggests that 
the tones are integrated with intonation just like small ripples 
riding on large waves. Recently, [2] proposed a five-layer prosody 
model: syllable, prosodic word, prosodic phrase, breath group, and 
prosodic phrase group. Based on the model, [2] explored syllable 
duration, energy level, and pitch patterns for prosodic units of each 
layer by using a well-annotated speech database with 5 break types 
being properly labeled manually [2]. In our previous study [3], an 
automatic joint prosody labeling and modeling method was 
proposed based on a four-layer model, which is a modification of 
the five-layer model, by using an unlabeled speech database. Two 
types of prosody tags, including 6 inter-syllable beak types and 16 
prosodic states of syllable pitch level, were labeled. In this paper, 
we extend our previous study by taking these two types of prosody 
tags as primitive features to exploit the syllable pitch-level and 
duration patterns for prosodic units of the upper three layers, i.e., 
PW, PPh, and BG/PG. The construction of a quantitative prosody 
hierarchy for Mandarin speech is therefore completed. 

The paper is organized as follows. Section 2 introduces the 
four-layer prosody model. Section 3 briefly reviews the findings of 
our previous study on the unsupervised joint prosody labeling and 
modeling for Mandarin speech. Section 4 presents the proposed 
formulations to explore the prosodic patterns of the upper three 
layers. Experimental results are discussed in Section 5. Some 
conclusions are given in the last section. 

2. PROSODIC PHRASE STRUCTURE 
Fig. 1 depicts a conceptual diagram of the four-layer prosody 
hierarchy of Mandarin speech [3] used in our previous and current 
studies. It is a modification of the five-layer model proposed in [2]. 
It consists of four layers: syllable (SYL), PW, PPh, and BG/PG. 

Two types of prosody tags, inter-syllable break type and prosodic 
state of syllable, are employed to characterize the prosodic units of 
these four layers. For the break type tag, we modify the 6-type 
break labeling scheme proposed by Tseng [2] by dividing B2 into 
two types, B2-1 and B2-2, and combining B4 and B5 into one 
denoted simply by B4. Here, B2-2 represents syllabic boundary of 
B2 perceived by pause, while B2-1 is B2 with F0 movement. The 
reason for dividing B2 into B2-1 and B2-2 is due to the difference 
in their acoustic characteristics, while the combination of B4 and 
B5 is owing to the similarity of their acoustic characteristics. A set 
of 6 break types, {B0, B1, B2-1, B2-2, B3, B4}, is therefore 
adopted and used to delimit these four prosody layers. For the 
prosodic state tag, we regard the relative log-F0 level of a syllable 
in the log-F0 contour of an utterance as prosodic state for F0 
modeling. Similarly, relative syllable duration is taken as prosodic 
state in the syllable duration model. A sequence of prosodic states 
can be regarded as an aggregation of log-F0/duration variation 
patterns of the four prosody layers. This study tries to separate the 
affections of these four layers and exploit the representative log-
F0/duration patterns of PW, PPh, and BG/PG. 

  
Fig. 1: A conceptual prosody hierarchy of Mandarin speech. 

3. REVIEW OF THE UNSUPERVISED JOINT 
PROSODY LABELING AND MODELING 

An unsupervised joint prosody labeling and modeling method was 
proposed in our previous study [3] to simultaneously label a large 
Mandarin speech database with the two types of prosody tags and 
build the relationship between the labeled prosody tags and some 
relevant linguistic features of the associated texts. Since its results 
are the foundation of the current study, we briefly review the main 
findings of the previous study as follows. 

3.1. The Syllable Pitch Contour Modeling 
The task of joint syllable pitch contour modeling and prosody tag 
labeling is formulated as a parametric optimization problem to find 
the best prosody tags ( ,B P ) given with the input acoustic 
prosodic features ( , ,SP PD PE ) and linguistic features (L,T): 

,

,

,

, argmax ( , | , , , , )

         argmax ( , , , , | , )

        argmax ( , , | , , , ) ( , | , )

P

P

P P

B P

B P

B P

B P B P SP PD PE L T

B P SP PD PE L T

SP PD PE B P L T B P L T

             (1)     

where ( , , | , , , )P SP PD PE B P L T  is a general prosody model 
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describing the variations of prosodic features ( , ,SP PD PE ) 
controlled by (B,P) and (L,T); ( , | , )P B P L T  is a prosody-syntax 
model describing the relationship between (B,P) and (L,T); 

,{ }k nBB  is the set of break type tags of the whole speech corpus 
with ,k nB  representing the break type of the inter-syllable 
location following syllable n in utterance k (referred to as 
boundary (k,n) thereafter); ,{ }k npP  is the set of prosodic state 
tags of the speech corpus and ,k np  represents the pitch prosodic 
state of syllable n in utterance k (referred to as syllable (k,n) 
thereafter); ,{ }k nSP sp  and ,k nsp  is the vector of first four 
orthogonal expansion coefficients [4] representing the log-F0 
contour of syllable (k,n); ,{ }k npdPD  and ,k npd  is the pause 

duration of boundary (k,n); ,{ }k npePE  and ,k npe  is the energy 

dip of boundary (k,n); ,{ }k nL l  and ,k nl  is the vector of 

contextual linguistic features around boundary (k,n); and ,{ }k ntT  

and ,k nt  is the tone of syllable (k,n).  

The general prosody model ( , , | , , , )P SP PD PE B P L T  is then 
simplified by 

, , , 1 , , 1 , , 1 , , , ,
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where , , , 1 , , 1 , , 1( | , , , , , )k n k n k n k n k n k n k nP p B B t t tsp  is a syllable pitch 

contour model which describes the dependence of ,k nsp  on the 

nearby prosody tags and tones; , , , ,( , | , )k n k n k n k nP pd pe B l  is a pause 

acoustic model which describes the dependence of ,k npd  and ,k npe  

on ,k nB  and some nearby linguistic features ,k nl . Similarly, we 

simplify ( , | , )P B P L T  by 

  ,1 , , 1 , 1 , ,
1 2 1
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where ,1( )kP p  is the initial prosodic state probability; 

, , 1 , 1( | , )k n k n k nP p p B  is the prosodic state transition probability; and 

, ,( | )k n k nP B l  is a break-syntax model which describes the 

dependence of ,k nB  on some nearby linguistic features ,k nl . In this 
study, the break-syntax model is trained by the decision tree 
method. 

, , , 1 , , 1 , , 1( | , , , , , )k n k n k n k n k n k n k nP p B B t t tsp  is then elaborated to 
consider four major affecting factors. With an assumption that all 
affecting factors are combined additively, we have 

, , , 1 , 1 , ,, , , ,k n k n k n k n k n k n

r f b
k n k n t p B tp B tpsp sp          (4) 

where ,
r
k nsp  is the normalized (i.e., residual) pitch contour; 

,k nt and 
,k np are the affecting patterns of ,k nt and ,k np , respectively; 

, 1 , 1,k n k n

f
B tp and 

, ,,k n k n

b
B tp are the forward and backward coarticulation 

affecting patterns; ,k ntp  is the tone pair , , +1( , )k n k nt t ;  is the global 
mean pattern. The model is further simplified by assuming that 

,
r
k nsp  is normally distributed. , , , ,( , | , )k n k n k n k nP pd pe B l  is also 

simplified and expressed by the product of a Gamma distribution 
for pause duration and a normal distribution for energy dip. 

Lastly, the model is trained by a sequential optimization 
procedure using a large Mandarin speech database with all texts 
being manually parsed with syntactic trees. After well training, all 
parameters of the model are obtained and the whole database is 
properly labeled with the two types of prosody tags, i.e., inter-
syllable break type and prosodic state of syllable pitch level. 

3.2. The Syllable Duration Modeling 
Given all inter-syllable break types being properly labeled by the 
syllable pitch contour modeling, the syllable duration model is 
constructed to consider some major affecting factors. Under the 
assumption that all affecting factors are combined additively and 
we have 

, , ,, , k n k n k n

r
k n k n t s q dsd sd             (5) 

where ,k nsd  and ,
r
k nsd  represent observed syllable duration and 

residual duration respectively; 
,k nt , 

,k ns , 
,k nq  and d  are 

respectively, affecting factors of tone, base syllable type, duration 
prosodic state (treated as a latent variable) and global mean. The 
residual duration ,

r
k nsd  is further modeled using a Gaussian 

distribution ,( ;0, )r
k n dN sd R . The duration model is trained by the 

expectation-maximization (EM) training algorithm. 

3.3. Joint Prosody Modeling and Labeling: some 
findings 
An unlabeled Mandarin speech database containing read speech of 
a single female professional announcer was used to train both 
syllable log-F0 contour and duration models. Its texts were all 
short paragraphs composed of several sentences selected from the 
Sinica Treebank Corpus [5]. The database consisted of 380 
utterances with 52192 syllables in total. The numbers of 
pitch/duration prosodic states were empirically set to be 16. 

Fig. 2 displays the distributions of pause duration and energy 
dip for these six break types. It can be found from the figure that 
the break types of higher level were generally associated with 
longer pause duration and lower energy dip. These conformed to 
our knowledge about break types. 

 
Fig. 2: The pdfs of (a) pause duration and (b) energy dip for these 
6 break types. Numbers in () denote the mean values. 

Fig. 3 displays the affecting factors of 16 prosodic states and 
their distributions for syllable log-F0 level and duration, 
respectively. As shown in the figure, those affecting factors 
spanned widely to cover the whole dynamic ranges of syllable F0 
level and duration variations with lower indices of prosodic state 
representing lower log-F0 levels and shorter syllable durations, 
respectively.  

Based on the break type labeling, we can divide the syllable 
sequences of all utterances into sequences of three prosodic units 
of PW, PPh and BG/PG to form a four-layer prosody hierarchical 
structure. According to the histograms displayed in Fig. 4, the 

(a) (b) 
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length of each of the three prosodic units mainly spans 
respectively from 1 to 12 syllables for PWs, from 1 to 20 syllables 
for PPhs, and from 1 to 60 syllables for BG/PGs. Statistics in 
Table 1 shows that the average lengths for these three types of 
prosodic units are respectively 3.17 syllables or 1.85 lexical words 
(LWs) for PWs, 6.98 syllables, 4.02 LWs, or 1.69 PWs for PPhs, 
16.69 syllables, 9.62 LWs, 4.07 PWs, or 1.94 PPhs for BG/PGs. 
These data approximately matched the results reported in [6-9]. 

 
Fig. 3: The affecting patterns of 16 prosodic states of syllable (a) 
F0-level and (b) duration. 

Table 1: Statistics of three types of prosodic units. Value in 
parentheses denotes standard deviation. 

Average length PW PPh BG/PG 
in syllable 3.17(1.74) 6.98(3.48) 16.69(9.49)

in lexical word 1.85(1.03) 4.01(2.17) 9.62(5.43) 
in PW 1.00  1.69(1.55 ) 4.07(2.90) 
in PPh X 1.00  1.94(1.75) 

 
Fig. 4: Histograms of lengths for BG/PG, PPh and PW. 

4. CONSTRUCTION OF PROSODIC PATTERNS  
We now explore the F0-level patterns for the three prosodic units 
of PW, PPh, and BG/PG. First, we extract the affecting patterns of 
prosodic state from the observed syllable F0 levels , (1)k nsp  by 
eliminating the SYL-layer influence which is realized by the 
affections of the current tone, the coarticulations from the two 
nearest neighboring tones, and the global mean, i.e., 

, , 1 , 1 , ,, , , ,(1) (1) (1) (1) (1)
k n k n k n k n k n

f b
k n k n t B tp B tppm sp         (6) 

where (1)x  denotes the first component of vector x (i.e. log-F0 
level).  

A sequence of ,k npm  delimited by B2-1/B2-2/B3/B4 at both 
sides is then regarded as a prosodic state pattern formed by 
integrating the F0-level patterns of the three prosodic units we 
considered. A model of pitch prosodic state pattern is therefore 
defined by 

, , ,, , /k n k n k n

r
k n k n PW PPh BG PGpm pm          (7) 

where ,
r
k npm  is the residual of F0-level at syllable (k,n); 

,k nPW  is 

the F0-level pattern of PW with , ( , )k nPW i j  denoting that syllable 

(k,n) is located at the j-th place of an i-syllable PW; 
,k nPPh  is the 

F0-level pattern of PPh with  , ( , )k nPPh i j  denoting that syllable 

(k,n) is located at the j-th place of an i-syllable PPh; and 
,/ k nBG PG  

is the F0-level pattern of BG/PG with ,/ ( , )k nBG PG i j  denoting 
that syllable (k,n) is located at the j-th place of an i-syllable 
BG/PG.  

Similarly, we extracted the duration prosodic state patterns 
from ,k nsd  by eliminating the SYL-layer influence realized by the 
affections of current tone, base syllable type and the global mean: 

, ,, , - - -
k n k nk n k n t s ddm sd            (8) 

A model of duration prosodic state pattern is then defined by 

, , ,, , /k n k n k n

r
k n k n PW PPh BG PGdm dm         (9) 

where ,
r
k ndm is the residual syllable duration, and 

,k nPW , 
,k nPPh  and 

,/ k nBG PG are duration patterns of PW, PPh and BG/PG, respectively. 

A sequential optimization procedure based on the MMSE 
criterion is adopted to train these two models. It first defines two 
error functions, respectively, for pitch and duration modeling by 

, , ,

2

, /
1 1

- - -
k

k n k n k n

NK

p k n PW PPh BG PG
k n

E pm                           (10) 

, , ,

2

, /
1 1

- - -
k

k n k n k n

NK

d k n PW PPh BG PG
k n

E dm                             (11) 

Then, with proper initializations, it sequentially updates the 
patterns of PW, PPh and BG/PG to minimize pE / dE  until a 
convergence is reached. 

5. EXPERIMENTAL RESULTS 
Fig. 5 displays the learning curves of the sequential optimization 
process of exploring prosodic patterns of syllable F0-level and 
duration. It can be seen from the figure that the optimization 
process converged around 6 iterations. 

  
Fig. 5: The learning curve of the sequential optimization procedure 
for (a) syllable F0-level and (b) syllable duration modeling. 

Fig. 6 displays the syllable F0-level patterns of 
, ,

,  
k n k nPW PPh , 

and 
,/ k nBG PG with different lengths. It is noted that only the 

patterns calculated using more than 20 instances of prosodic state 
patterns are displayed because we want to know their general F0-
level patterns. As shown in Fig. 6(a) that all /BG PG  had declining 
patterns with dynamic range spanning approximately from -0.1 to 
0.1. Moreover, most of them had short ending resets. From Fig. 
6(b), we find that short PPh  had rising-falling patterns, while long 

PPh  had rising-falling-sustaining-falling patterns. Moreover, they 
had smaller dynamic range spanning approximately in [-0.07, 007]. 
Lastly, we find from Fig. 6(c) that short PW  showed high-falling 
patterns, while long PW  showed falling-sustaining-falling patterns. 
Their dynamic range spanned approximately from -0.1 to 0.1. All 
these three types of F0-level patterns generally agree with our 
knowledge about Mandarin prosody. 

(a) (b) 

(a) (b) 
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Fig. 6: The syllable F0-level patterns of (a) BG/PG, (b) PPh, and (c) 
PW.  “ ” in (a) indicates the ending syllable of a F0-level pattern. 

Fig. 7 displays the syllable duration patterns of 
,k nPW , 

,k nPPh  

and 
,/ k nBG PG with different lengths. It can be clearly observed from 

Fig. 7 that the last syllables of all duration patterns of PPH and PW 
were lengthened significantly, while those of most BG/PG 
duration patterns were shortened. Interestingly, the shortening of 
the antepenultimate syllable in PPh, which is an important feature 
of tempo structure in Mandarin Chinese, is also found. These 
phenomena completely matched with the findings of [2].   

Table 2 displays the total residual error (TRE), which is the 
percentage of sum-squared residue over the observed sum-squared 
log-F0/syllable duration, with respect to the use of different 
combination of affecting factors. It can be found from the table 
that TRE reduced as more affecting factors were used. The low 
level affecting factors/linguistic features (i.e., tone, coarticulation 
and base-syllable) accounted for 59.4% and 36.6% of prosodic 
variation in pitch and duration, respectively. However, high-level 
prosodic units (i.e. PW+ PPh + BG/PG) only contributed 17.2% 
(40.6% - 23.4%) and 18.1% for pitch and duration, respectively. 
By further investigating the contributions of high-level prosodic 
patterns, we find that the most significant one is PW. These results 
also matched well with the findings of [2]. 

Table 2: Total residual errors (TRE) w.r.t. the use of different 
combinations of affecting factors for pitch/duration modeling 

Pitch Modeling Duration Modeling 
Affecting factors TRE Affecting factors TRE 

+ Tone 46.3% + Base Syllable 69.1%
+ Coarticulation 40.6% + Tone 63.4%
+ PW 32.2% + PW 53.7%
+ PPh 28.3% + PPh 48.4%
+ BG/PG 23.4% + BG/PG 45.3%

5. CONCLUSIONS 

In this paper, we exploited high-level prosodic patterns of PW, 
PPh and BG/PG for syllable pitch-level and duration using an 
automatic joint prosody labeling and modeling method. 
Experimental results on a treebank speech corpus confirmed that 
most prosodic patterns found were linguistic meaningful. More 
sophisticated exploration of prosodic patterns of pitch and duration 

as well as the extension to energy modeling are worth further 
studying. 

 
Fig. 7: Syllable duration patterns of (a)BG/PG, (b)PPh, and (c) PW.  
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