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ABSTRACT
One of the issues of speech synthesizers based on hidden Markov
models concerns the vocoded quality of the synthesized speech. From
the principle of analysis-by-synthesis speech coders a trainable ex-
citation model has been proposed to improve naturalness, where the
method consists in the design of a set of state-dependent filters in a
way to minimize the distortion between residual and synthetic ex-
citation. Although this approach seems successful, state definition
still represents an open issue. This paper describes a method for
state definition wherein bottom-up clustering is performed on full
context decision trees, using the likelihood of the residual database
as merging criterion. Experiments have shown that improvement on
residual modeling through better filter design can be achieved.

Index Terms— Speech processing, speech synthesis, hidden
Markov models, digital filters.

1. INTRODUCTION

In the past years some attempts have been made to improve the natu-
ralness of hidden Markov model (HMM)-based speech synthesizers.
This subject has gained attention from the speech synthesis research
community due to the fact that once synthesizers based on this tech-
nology achieve quality similar to unit concatenation-based systems,
they might finally suit the increasing demand for high-quality speech
synthesis with flexibility concerning the possibility of voice transfor-
mation, utilization of small corpora and footprint, etc.

Many approaches have been proposed to improve the quality of
HMM-based speech synthesizers through the design of better exci-
tation models, e.g [1, 2, 3, 4, 5]. Most of them are based on the
modeling of auxiliary parameters in the HMMs themselves so that
during the synthesis a parametric excitation signal can be produced.
In Yoshimura’s approach [1] for instance, parameters encoded by
the Mixed Excitation Linear Prediction (MELP) algorithm [6] are
used to construct an excitation signal in the same way as performed
by the MELP decoder. Using the same philosophy, Zen et al pro-
posed the utilization of the STRAIGHT vocoding method for HMM-
based speech synthesis [2]. Going beyond the source-filter frame-
work, modeling of sinusoidal coefficients was utilized by Abdel-
Hamid [4] and harmonic plus noise model by Hemptinne [5]. Back
to the source-filter scheme, Cabral proposed a glottal source model
to replace the input pulse train during the synthesis [7]. In Cabral’s
method glottal source parameters are derived from the speech
database itself, with no modeling by HMMs.

In [8] a trainable excitation model for HMM-based speech syn-
thesis is described. The method is based on the principle of analysis-
by-synthesis speech coders and consists in the optimization of some
state-dependent filter coefficients through the minimization of the
difference between synthetic excitation and residual, with the latter
being directly obtained from the speech corpus through inverse filter-
ing. Although the scheme in question performs well, state definition
remains vague. Specifically for the experiments presented in [8], fil-
ter states were regarded as leaves of decision trees for mel-cepstral
coefficients, constructed with the utilization of phonetic questions.
Eventually, the resulting clusters were used to tag Viterbi-aligned
segments of the training database. Therefore, as reported in [8],
since this method is rather empirical, an appropriate state definition
still represents an open issue. This paper presents an approach to
address this problem. The proposed algorithm performs bottom-up
clustering in the usual full context mel-cepstral coefficients decision
trees, generated during the training of the HMM-based synthesizer,
using the likelihood of residual sequences as merging criterion.

The rest of this paper is organized as follows: Section 2 out-
lines the trainable excitation model of [8]; Section 3 concerns state
definition, starting with the description of how it has been performed
followed by the description of the proposed method; Section 4 shows
some experiments; and the conclusions are in Section 5.

2. TRAINABLE EXCITATION

2.1. Synthesis part

Fig. 1 depicts the synthesis stage of the excitation model proposed
in [8], where pulse train, t(n), and white noise, w(n), are filtered
through Hv(z) and Hu(z), respectively, and added together to re-
sult in the excitation signal ẽ(n). The voiced and unvoiced filters,
Hv(z) and Hu(z), respectively, are associated with each HMM state
position s and their transfer functions are

Hs
v(z) =

M/2X
l=−M/2

hs(l)z
−l, (1)

Hs
u(z) =

Ks

1−PL
l=1 gs(l)z−l

, (2)

where M and L are the respective orders.
The design of the voiced filter Hv(z) is performed in a way that

the voiced excitation v(n) becomes as close as possible to residual
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Fig. 2. During the training: pulse train and residual are the input
while white noise is the assumed output.

sequences in voiced regions. The unvoiced filter Hu(z), on the other
hand, weights the input noise sequence w(n) in order to produce the
unvoiced component, u(n), of the excitation signal ẽ(n).

2.2. Training part

The excitation model components, namely the voiced and unvoiced
filters Hv(z) and Hu(z), and pulse train t(n), are iteratively calcu-
lated in a way to minimize the error between residual and synthetic
excitation. In order to visualize the procedure, the block diagram
of Fig. 2 should be taken into account. This block can be obtained
from the one shown in Fig. 1 if we consider the residual, e(n), as
the input and white noise, w(n), as the output. By making an anal-
ogy with analysis-by-synthesis speech coders [6], one can notice that
the target signal is represented by e(n), the error of the system is
Kw(n), and the terms whose incremental modification can mini-
mize the power of Kw(n)1 are the filters and pulse train. Therefore,
the problem of achieving an excitation signal whose waveform can
be as close as possible to the residual consists of the design of Hv(z)
and Hu(z), and optimization of t(n).

2.2.1. Filter determination

Using matrices and vectors, with N being the total number of sam-
ples of the entire database, the filters are determined by minimizing
the mean squared error ε, given by

ε =
1

N

"
e−

SX
s=1

Ashs

#T

GT G

"
e−

SX
s=1

Ashs

#
, (3)

where G is an N × N matrix containing the impulse response of
the inverse unvoiced filter G(z), hs = [hs(−M/2) · · ·hs(M/2)]T

is the impulse response vector of the voiced filter for state s, and

1w(n) itself is assumed to have power one.

the term As is the overall pulse train matrix where only pulse po-
sitions belonging to state s are non-zero. In this case, each state
s = {1, . . . , S} corresponds to a different HMM state position cov-
ering the entire database, after Viterbi-alignment.

Voiced filter coefficients for a given state s can be obtained by
making ∂ε/∂hs = 0, which results in a linear system for the so-
lution of hs [8]. On the other hand, the unvoiced filter coefficients
for state s, {gs(1), . . . , gs(L)}, and related gain Ks, are determined
by performing linear prediction analysis on the unvoiced excitation
signal ũ(n) = e(n)− v(n) over segments tagged as state s.

2.2.2. Pulse optimization

Aside from the determination of the filters, the positions and am-
plitudes of t(n), {p1, . . . , pZ} and {a1, . . . , aZ}, with Z being the
number of pulses of the entire training database, are modified in the
sense of minimizing the mean squared error of (3). The process in
which the positions and amplitudes are calculated resembles multi-
pulse excitation linear prediction coding algorithms [6].

2.2.3. Recursive algorithm

The overall procedure for the design of the filters and optimization of
t(n) is performed in an interchanging way, with the convergence cri-
terion being either filter coefficient variation or mean squared error
reduction.

3. STATE DEFINITION

3.1. Phonetic decision trees

In the experiments presented in [8] states s = {1, . . . , S} were re-
garded as leaves of decision trees specifically constructed to tag the
HMM states eventually used to train the excitation model. The trees
were constructed using solely phonetic questions, and the factor used
as stopping criterion for the splitting process was set in a way that
just gross phonetic information, such as voiced, unvoiced, fricative,
stops, etc, was conveyed by the trees.

3.2. New approach for state-definition: bottom-up clustering

3.2.1. The idea

Since the idea of utilizing phonetic decision trees seems rather em-
pirical, it is not guaranteed whether it could work effectively across
different database sizes and different languages, with possibly very
few or large number of phonetic questions for clustering the features
usually employed in the HMM-based speech synthesis technique.

To obtain a less empirical state definition, processing of the trees
for mel-cepstral coefficients which is actually used by the HMM-
based synthesizer could be a good choice. In fact, the initial idea of
states for the excitation model corresponded to leaves of the trees in
question because of the direct relationship between mel-cepstral co-
efficients and residual. However, as the number of clusters might be
considerably large depending on several factors, the number of resid-
ual segments with similar characteristics for some terminal nodes
might not be enough in order to enable a robust design of the voiced
filter impulse responses. In order words, the size of the trees which
might be adequate for modeling the distribution of mel-cepstral co-
efficients, may not be for the calculation of the filters. Therefore,
merging the leaves of the referred trees according to some criterion
related to the residual database, in connection with the filters them-
selves, may lead to an effective approach. The maximization of the
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likelihood of residual signals e(n) given the excitation model is per-
haps a good criterion for the bottom-up clustering in question.

The procedure above pictured presents two main advantages when
comparing with the utilization of phonetic decision trees: (1) the fil-
ter states correspond to a more general version of the trees which are
actually employed for HMM-based speech synthesis; (2) the algo-
rithm can automatically define the states, assuming likelihood incre-
ment or number of final clusters as stopping criterion.

3.2.2. Merging criterion: residual likelihood

Assuming that the noise sequence w(n) which drives the unvoiced
filter Hu(z) is Gaussian, the log likelihood of the output vector u is

log P [u|Hu] = −N

2
log 2π +

1

2
log |GT G| − 1

2
uT GT Gu. (4)

Since

|GT G|−1 =

N−1Y
n=0

K2˛̨̨
1−PL

l=1 g(l)e−jωnl

˛̨̨2 , (5)

the second term of (4) becomes

1

2
log |GT G| = 1

2

N−1X
n=0

log

˛̨̨
˛̨1− LX

l=1

g(l)ejwnl

˛̨̨
˛̨
2

−N log K. (6)

Because G(z) is minimum-phase, the first term of (6) is zero [9]
(pages 129-130). Further, it can be noticed for the third element
of (4) that

uT GT Gu = K2wT w = K2
N−1X
n=0

w2(n). (7)

Assuming that w(n) is white with mean zero and variance one, then

E{w2(n)} = 1 ⇒ 1

N

N−1X
n=0

w2(n) ≈ 1, (8)

and consequently
uT GT Gu = NK2. (9)

Thus, the likelihood of e(n) given the excitation model2 depends
only on the unvoiced filter gain K,

log P [e|Hv,Hu, t] = −N

2
log 2π −N

„
log K +

K2

2

«
. (10)

3.2.3. State-dependency

Since filter coefficients are different for each state, (10) can be re-
written as

log P [e|Hv,Hu, t] = −N

2
log 2π +

SX
s=1

Ls, (11)

where

Ls = −Ns

„
log Ks +

K2
s

2

«
, (12)

is the likelihood contribution yielded by state s, Ns is the respective
total number of samples, and Ks is the corresponding unvoiced filter
gain. From (12) one can see that the smaller the gain factor Ks is,

2Note that P [u|Hu] ⇔ P [e|Hv,Hu, t].

the greater is the contribution of the state to the overall likelihood.
Further, one can also notice that small Ks means that the power of
the unvoiced excitation ũ(n) = e(n)− v(n) of segments belonging
to state s is small, which finally bring us to conclude that the voiced
filter Hv(z) is performing well in terms of modeling the residual
e(n) through the voiced excitation v(n).

3.2.4. Clustering algorithm

The procedure bellow is utilized for the clustering process. It starts
assuming the existence of S′ clusters from initial decision trees. The
desired number of final clusters is S. For each merging step:

1. calculate all the possible Linc, where

Linc = Lsi,sj − Lsi − Lsj , (13)

with Lsi,sj being the likelihood of the cluster resulted by the
merging of si and sj ;

2. merge clusters si and sj with biggest Linc;

3. make S′ = S′ − 1;

4. if S′ = S (or if Linc falls below a given threshold), stop.
Otherwise, go to the next merging step.

4. EXPERIMENTS

In order to verify the effectiveness of the bottom-up clustering method,
the ATR503 Japanese speech database was used to train an HMM-
based synthesizer and two excitation models.

4.1. Excitation models

4.1.1. Using states defined by phonetic decision trees

The first excitation model was trained assuming the leaves of pho-
netic decision trees for mel-cepstral coefficients as states, constructed
according to the description of Section 3.1, i.e., using only pho-
netic questions and large MDL (Minimum Description Length) fac-
tor, λ = 10. A total of S = 75 clusters were created.

4.1.2. Using states defined by bottom-up clustering

The second excitation model was derived according to the bottom-up
clustering approach. The initial trees were the ones constructed for
the distribution of mel-cepstral coefficients in HMM-based speech
synthesis. The stopping criterion for the merging process was chosen
as S = 75, in order to compare with the states defined by phonetic
decision trees of Section 4.1.1.

4.2. Result of the clustering process

Table 1 summarizes the result of the clustering procedure whereas
Fig. 3 shows the evolution of the likelihood increment Linc for each
merging step. It can been seen that for the first 114 merging steps the
likelihood increment is positive, even though it would be expected
that by merging two clusters it should be negative due to the reduc-
tion of degrees of freedom for modeling the same amount of data.
However, by merging two clusters whose voiced filters were not ro-
bustly calculated may produce a better resulting filter if the overall
number of similar segments increase against the number of different
segments within the merged cluster. With better filters, the power of
the error signal ũ(n) = e(n) − h(n) ∗ t(n) is decreased, increas-
ing the likelihood. From merging step 115, when this problem is
apparently solved, Linc becomes negative.
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Table 1. Summary of the clustering process.

Number of initial clusters 699
Number of final clusters 75

Initial clusters which were not merged 9
Clusters created through the merging of initial ones 66
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Fig. 3. Evolution of the likelihood increment Linc across the merg-
ing steps.

4.3. Filter impulse responses

A problem of utilizing phonetic decision trees for state definition is
that depending on the database some voiced filters can show poor
modeling properties, as it can be seen in the 3-D depiction of the
voiced filter impulse responses of Fig. 4(a). This happens because
sometimes residual segments with very different characteristics, such
as voiced fricatives and unvoiced stops, may belong to the same
cluster, and consequently their modeling through the convolution of
voiced filters and pulse trains becomes difficult. This problem is sig-
nificantly alleviated with the utilization of the states defined by the
bottom-up clustering approach, as shown in Fig. 4(b).

4.4. Likelihood of the excitation models

Table 2 shows the likelihood of e(n) given the excitation models,
calculated according to (11). The higher likelihood for the bottom-
up state definition approach means that voiced excitation signals
v(n) are closer to the target signals e(n) in the analysis-by-synthesis
system of Fig. 2. Consequently, it can be concluded that better mod-
eling of the residual database is achieved by the method in question.

5. CONCLUSION

This paper presented a new direction for state definition in a train-
able excitation model for HMM-based speech synthesis. The method
performs bottom-up clustering on full context decision trees for mel-
cepstral coefficients using the residual likelihood maximization cri-
terion. Experiments have shown that states defined according to this
approach result in better residual modeling.
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