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ABSTRACT

This paper presents a minimum unit selection error (MUSE) 
training method for HMM-based unit selection speech 
synthesis system, which selects the optimal phone-sized unit 
sequence from the speech database by maximizing the 
combined likelihood of a group of trained HMMs. Under 
MUSE criterion, the weights and distribution parameters of 
these HMMs are estimated to minimize the number of 
different units between the selected phone sequences and 
the natural phone sequences for the training sentences. The 
optimization is realized by discriminative training using 
generalized probabilistic descent (GPD) algorithm. Results 
of our experiment show that this proposed method is able to 
improve the performance of the baseline system where 
model weights are set manually and distribution parameters 
are trained under maximum likelihood criterion. 

Index Terms— Speech synthesis, unit selection, HMM, 
minimum unit selection error, discriminative training

1. INTRODUCTION 

At current stage, unit selection and waveform concatenation 
synthesis [1] and HMM-based parametric synthesis [2] are 
two main speech synthesis methods. Each of these two 
methods has its advantages. For unit selection and 
waveform concatenation method, the original waveforms 
are preserved and better naturalness can be obtained 
especially given a large database. On the other hand, HMM-
based parametric synthesis provides better smoothness, 
robustness, flexibility and automation in system building.  

In order to integrate the advantages of these two methods, 
an HMM-based unit selection speech synthesis system was 
proposed in our previous work [3,4] and satisfactory 
performance was achieved. In this method [4], following a 
Kullback-Leibler divergence based unit pre-selection, the 
optimal candidate phone sequence was searched out from 
the speech database by maximizing the combined likelihood 
of a group of HMMs, including spectral model, F0 model, 
phone duration model and so on. These models are trained 
under maximum likelihood criterion. Then the waveforms 

of selected unit sequence are concatenated to produce 
synthesized speech. The advantage of this method over 
conventional unit selection method is that statistical 
criterions are introduced into the calculation of target and 
concatenation cost, so the synthesis system can be more 
robust with little human intervention during system building.  

However, there are still two problems with the training 
of this system. First, the weights for combining different 
models can not be trained automatically under the maximum 
likelihood criterion which is designed to train the 
parameters of different models separately. Second, there is 
no obvious consistency between ML criterion used in model 
training and the purpose of a unit selection synthesis system. 
In order to solve these two problems, we try to introduce 
some objective criterions into model training that are able to 
evaluate the overall performance of a unit selection system 
on the training set. Here, we start our work from the 
simplest one that is to evaluate the synthesized speech by 
counting how many phones in the selected unit sequence are 
different from the natural sequence when synthesizing a 
sentence in the training database. Then model weights and 
parameters are estimated to minimize such unit selection 
error. Similar discriminative training method for MCE 
criterion [5] in speech recognition is adopted here to realize 
the optimization of model weights and parameters. 

This paper is organized as follows. In section 2, the 
baseline HMM-based unit selection system and ML-based 
model training is described. Section 3 introduces the 
discriminative training method under MUSE criterion. 
Section 4 and 5 are the experiment and conclusion. 

2. BASELINE SYSTEM 

2.1. HMM-based unit selection 

In our previous work [4], the likelihoods of a group of 
trained HMMs are combined with some weights to guide 
the phone-sized unit selection as shown in Eq. (1). 

   (1) 
1

arg max log ( , ), ( , ) | ,
M

m m
m

w P X m q m F*

U
U U U

39491-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



where  denotes a candidate phone sequence 
for the input sentence with N phones and  is the optimal 
one; M  represents the number of  phone HMM sets for 
different features used in our system;  and  mean the 
m-th HMM set and its weight; F denotes the contextual 
information of a input sentence given by the result of text 
analysis, which is used to decide the sentence HMM from 
the trained model sets;

1( ,..., )Nu uU
*U

m mw

( , )X mU  and  denotes the 
feature sequence and state sequence of U that correspond to 
the m-th model. For example, if  presents the HMM set 
for mel-cepstrum parameters, then  means each 
frame’s mel-cepstrum of unit sequence U and 
means the state that each frame’s mel-cepstrum features 
belongs to. In Eq.(1) only one state path is used to calculate 
the HMM likelihood in order to simplify the computation. 
Eq.(1) can be further rewritten into traditional format of the 
sum of target cost and concatenation cost [4]. Then 
dynamic programming search can be applied to select the 
optimal unit sequence. In order to reduce the computation 
cost of unit selection, a KLD-based unit pre-selection 
method [4] is carried out before the DP search. 

( , )q mU

1

( ,1)X U
( ,1)q U

2.2. ML-based model training 

In our system, five different HMM sets for contextual 
dependent phones are used. They are spectral model, F0 
model, phone duration model, concatenative spectral model 
and concatenative F0 model respectively. These models are 
trained under maximum likelihood criterion and the weights 
among them are set manually. 

The spectral model and F0 model are trained as different 
streams in a unified acoustic model. At first, acoustic 
features are extracted from the speech waveforms of 
training database. STRAIGHT [6] is used to analyze the 
spectral envelop and F0 from the waveform of training 
database. Then mel-cepstrums are derived from the 
STRAIGHT spectrum for each frame. The final feature 
vector consists of static, delta and delta-delta components of 
mel-ceptrums and logarithmized F0. A set of contextual 
dependent HMMs are estimated according to the acoustic 
features and label information of the training database under 
maximum likelihood criterion. The spectral features and F0 
are treated as different streams in model training and multi-
space probability distribution (MSD) [7] is used to describe 
the F0 streams. A decision tree based model clustering 
method is applied after contextual dependent HMM training 
to improve the robustness of estimated models.  

After training of acoustic model, each utterance in the 
training database is segmented into phones by Viterbi 
alignment. Based on the results of segmentation, contextual 
dependent phone duration model, concatenative spectral 
model and concatenative F0 model are trained with the 
same decision tree clustering method as acoustic model 
training. The feature of concatenation model is defined as 

the differential of mel-cepstrum and F0 between the first 
frame of current phone and the last frame of previous phone. 
MSD is also used for the concatenative F0 model. 

3. DISCRIMINATIVE TRAINING UNDER MUSE 
CRITERION

3.1. Optimization criterion 

Here we propose the minimum unit selection error (MUSE) 
training for the following two reasons: 
1) To realize fully automatic training. In our baseline 

system, the model weights  can not be estimated 
because these models are trained under ML criterion 
separately with different features. Therefore we need a 
criterion that is able to give a unified evaluation for all 
models to estimate these model weights automatically. 

mw

2) To improve the consistency between the model training 
criterion and the purpose of a unit selection system that 
is to provide as much similarity as possible between 
synthesized speech and the natural one.

A simple evaluation of such similarity is to count how 
many phone units are different between the selected unit 
sequence and the natural unit sequence when synthesizing 
sentences in the speech corpus. We define such difference 
as unit selection error and expect to optimize model weights 
and parameters to minimize this error. 

The discriminative training method for MCE [5] training 
in speech recognition is followed to realize the optimization 
of MUSE training. At first, the discriminant function is 
defined as Eq.(2) for a training sentence with contextual 
description F given  and W

1
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M
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and Eq. (1) can be rewritten as 
                    (3) arg max ( , ; , )g F*

U
U U

where 1,..., M , denote all model 
parameters and weights. In order to describe the decision 
process as Eq.(3) in a functional form, a misclassification
measure is introduced 
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where 1( ,..., )r r r
Nu uU  is the r-th best candidate unit 

sequence for the input sentence and 0U represents the 
natural unit sequence for the training sentence. 

,...,
arg max ( , ; , )

0 r-1

r g F
U U U

U U W       (5) 

maxr  defines how many candidate unit sequence are taking 
into calculation for misclassification measure. In our 
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implementation,  is set to 1 and Eq.(4) can be simplified 
as

maxr

( ; , ) ( , ; , ) ( , ; , )0 1d F g F g FW U W U W    (6) 

Then the loss function is defined in a smoothed zero-one 
form as Eq.(7) to evaluate the performance of the unit 
selection for one sentence where  controls the smoothness 
of the sigmoid function. 

( ; , )

1( ; , )
1 d Fl F

e WW       (7) 

For a speech corpus with I sentences, the criterion of 
MUSE training is to minimize the overall empirical loss 

, which is calculated as ,L W

1, ( ;i
i

L l F
I

W , )W

i

      (8) 

Actually, what Eq.(7) measures is the sentence-level 
string error rate, not the phone-level unit error rate as we 
expect. However, the result of our experiment shows that 
we can also get the reduction of unit selection error by 
minimizing the string error rate according to above criterion. 

3.2. Parameter estimation using GPD 

The generalized probabilistic descent (GPD) [8] algorithm 
is adopted here to realize the optimization of Eq.(8) by 
following iterative updating 

( ), ( )( 1) ( ) ( ; ) |i i ii i l F W WW W W       (9) 

( ), ( )( 1) ( ) ( ; ) |i i ii i l F iW WW           (10) 

where iF  denotes the input contextual description of the i-th
sentence and i  is the step size of each adjustment.  

3.2.1. Update of model weights 
Given a training sentence, the update of model weight 
follows 

mw
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3.2.2. Update of model parameters 
For HMM parameters, only means and variance in state 
PDFs of each m are updated. In Eq.(1), we define 

X m 1) [ ,..., ]
mm mT( ,U x x , where mT  is e number of 

frames for feature sequence ( ,

 th

)X mU ;
[mt and mDx  is the feature dimension of 

the m-th HMM;  
1,..., ]

m

T
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0 0 1 1) , , , ,..., ,
m mm m m m mT mT( , u q u q u qU , where q m

,mt mu q es the phone unit index and state index 
that the t-th frame of U  belongs to. 

t  denot

Then the log likelihood in Eq.(1) can be rewritten as 
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where  is the transition probability from state k to state 
k’ for the contextual dependent HMM of unit j that belongs 
to model set 

'mjkka

m ; m jk  is the initial probability; mjk mtb x
is the state observation PDF and presented by a normal 
distribution with diagonal covariance matrix in our system 

; ,mjk mt mt mjk mjkb x x RN                     (17) 
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Similar to the update of model weights, the update of the 
means and variances follows 
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where ( )  denotes the Kronecker delta function.
For F0 model and concatenative F0 model with MSD, 

only the distribution parameters of the voiced space are 
updated.
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4. EXPERIMENTS 

4.1. Experiment conditions 

A Chinese speech database containing 1000 phonetically 
balanced sentences pronounced by a professional female 
speaker was used in our experiment. The total size of the 
waveform is 266MB (16kHz sampled, 16bits PCM). Speech 
signal was analysis at 5 ms frame shift and the mel-
cepstrum order was 13 (including 0-order). 5-state left-to-
right with no skip HMM structure was adopted. In Chinese 
each syllable has a [Consonant]+Vowel+[Nasal] structure 
and can be split into initial part ([Consonant]) and final part 
(Vowel+[Nasal]). Each initial/final is treated as a phone unit 
in our experiment. The training of the baseline system 
followed the introduction of section 2 and the model 
weights  are all set to 1. mw

In MUSE training, 800 sentences are selected randomly 
from the database for training and the remaining sentences 
are used as testing set for unit selection error rate evaluation. 
The initial values of model weights are all set to 1, which is 
the same as the baseline system. The clustered contextual 
dependent HMMs given by ML training in the baseline 
system are used as the initial model for mean and variance 
updating according to Eq.(19)-(22). 10 iterations using the 
training set are carried out and the convergence of unit 
selection error rate on the training set and testing set is show 
in Fig. 1. The error rate is calculated as the number of unit 
selection error divided by the number of all synthesized 
phone units. 

Figure 1: The convergence of unit selection error rate for 
MUSE training on the training set and testing set 

4.2. Subjective evaluation 

40 sentences out of the training set were synthesized by 
the baseline system and MUSE training system. These 
sentences were tested by 5 listeners pair by pair. The 
listener was asked to tell which sentence in each pair is 
better. Then we calculated the preference score of these two 
systems by collecting the evaluation of all listeners.

Figure2: The preference score of subjective evaluation for 
the baseline and MUSE system 

The result is shown in Fig.2 which reflects the 
improvement of MUSE training compared with the baseline 
system. 

5. CONCLUSION 

This paper makes some preliminary exploration in adopting 
task specific criterion for unit selection synthesis into the 
model training of a statistical model based unit selection 
speech synthesis system. A discriminative training method 
under MUSE criterion is proposed which helps us to 
estimate the model weights that can not be estimated under 
ML criterion and improve the performance of synthesized 
speech. However, MUSE is still far from an ideal criterion 
to evaluate the performance of a unit selection system. To 
design more reasonable criterion and to improve the 
optimization method will be the goals of our future work.  
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