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ABSTRACT 
 

This paper examines the effect of applying noise compensation to 

improve acoustic speech feature prediction from noise 

contaminated MFCC vectors, as may be encountered in distributed 

speech recognition (DSR). A brief review of maximum a posteriori 

prediction of acoustic speech features (voicing, fundamental and 

formant frequencies) from MFCC vectors is made. Two noise 

compensation methods are then applied; spectral subtraction and 

model adaptation. Spectral subtraction is used to filter noise from 

the received MFCC vectors, while model adaptation is applied to 

adapt the joint models of acoustic features and MFCCs to account 

for noise contamination. Experiments examine acoustic feature 

prediction accuracy in noise and results show that the two noise 

compensation methods significantly improve prediction accuracy 

in noise. The technique of model adaptation was found to be better 

than spectral subtraction and could restore performance close to 

that achieved in matched training and testing. 

Index Terms—robustness, distributed speech recognition, 

acoustic feature prediction, noise adaptation, spectral subtraction 

 

1. INTRODUCTION 
 

In recent years there has been considerable interest in distributed 

speech recognition (DSR) for applications operating over mobile 

networks. In the first version of the ETSI Aurora DSR standard, 

MFCC feature extraction is performed on the terminal device and a 

stream of feature vectors is transmitted to the remote back-end for 

decoding at a bit rate of 4800bps [1]. A later version of the ETSI 

standard also transmitted voicing and fundamental frequency 

which increased the bit rate to 5600bps [2]. One motivation for 

transmitting this extra information is to enable audio speech 

reconstruction at the back-end. This is achieved using a sinusoidal 

model that uses an MFCC-derived spectral envelope together with 

fundamental frequency to reconstruct the audio. 

In recent work we have shown that the voicing and 

fundamental frequency of a frame of speech can be predicted 

solely from the MFCC representation of that frame [3]. This is 

achieved by modelling the joint density of fundamental frequency 

and MFCC vectors which allows a maximum a posteriori (MAP) 

prediction of fundamental frequency to be made from an MFCC 

vector. This removes the need to transmit voicing and fundamental 

frequency and allows speech to be reconstructed solely from the 

MFCC vectors. We have also extended this work to predict other 

acoustic features such as formant frequencies and speech class 

from MFCCs vectors [4]. 

The aim of this work is to extend previous work by improving 

acoustic feature prediction from MFCC vectors contaminated by 

acoustic noise. Without noise compensation, prediction accuracy 

reduces as the signal-to-noise ratio (SNR) decreases. Two methods 

of noise compensation are investigated. The first is spectral 

subtraction which removes noise from the MFCC vectors. The 

second method adapts the models of the joint density of acoustic 

features and MFCC vectors to model noisy speech. 

Section 2 gives a brief review of MAP prediction of acoustic 

speech features from MFCCs. The application of spectral 

subtraction and model adaptation to acoustic feature prediction 

from noisy MFCCs is presented in section 3. Section 4 shows 

experimental results on the effectiveness of noise compensation for 

speaker-dependent and speaker-independent databases.  

 

2. ACOUSTIC FEATURE PREDICTION 
 

This section describes how acoustic speech features are predicted 

from MFCC vectors. Further details of the procedure are given in 

[3][4]. Prediction of acoustic speech features (voicing, fundamental 

frequency and formant frequencies) from MFCC vectors is 

achieved by modeling the joint density of acoustic features and 

MFCC vectors. Then, given an MFCC vector, the joint density 

enables a MAP prediction of the associated acoustic features.  

The procedure begins by defining a joint feature vector, zt, 

comprising an MFCC vector, xt and an acoustic speech vector, ft, 

zt = x t ,ft[ ]    (1) 

where t indicates vector number. In this work the acoustic vector, 

ft, comprises the fundamental frequency, F0, and the first four 

formant frequencies, F1 to F4, i.e. f = F0,F1,F2,F3,F4[ ] . For 

unvoiced speech and non-speech, F0 is set to zero and for non-

speech, F1 to F4 are set to zero. The MFCC vector conforms to the 

ETSI Aurora standard and comprises static MFCCs 0 to 12 [1].  

 

2.1 Training 
 

Three voicing classes exist for the speech; voiced, unvoiced and 

non-speech. As such, training data vectors are pooled into three 

sets, 
v
, 

u
  and 

ns
, according to their reference voicing. From 

each of these three sets of joint feature vectors, Gaussian mixture 

models (GMMs), 
v
, 

u
  and 

ns
, are trained. Considering the 

voiced GMM (unvoiced and non-speech GMMs follow similar 

training procedures – see [4]), expectation-maximisation (EM) 

clustering is used to create a GMM comprising K
v
 clusters, 

p zt( ) = v zt( ) = k
v

k
v zt( ) =

k=1

K v

k
v N zt;μk

v , k
v( )

k=1

K v

 (2) 
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Each cluster comprises a prior probability, k
v
, and a Gaussian 

probability density function, N, with mean vector, μk
v

, and 

covariance matrix, k
v
. The mean vector comprises two 

components, the mean of the voiced MFCC vectors, μk
v,x

, and the 

mean of the acoustic feature vector, μk
v,f

. Similarly, the 

covariance matrix comprises four components; the covariance 

matrix of the MFCC vectors, k
v,xx

, the covariance matrix of the 

acoustic features, k
v,ff

, and the covariances of the MFCCs and 

acoustic features, k
v,xf

 and k
v,fx

. The components of  μk
v

 and 

k
v
 can be represented as, 

μk
v

=
μk
v,x

μk
v,f

 

 

 
 

 

 

 
 
  and  k

v
=

k
v,xx

k
v,xf

k
v,fx

k
v,ff

 

 

 
 

 

 

 
 
  (3) 

2.2 Prediction 
 

The voiced, unvoiced and non-speech GMMs can now be used to 

predict the voicing, fundamental frequency and formant 

frequencies associated with an input MFCC vector. First a voicing 

decision is made by computing the probability of the MFCC vector 

from each of the three marginalised GMMs, 
v,x

, 
u,x

  and 
ns,x

, 

voicingt =

voiced v,x x t( ) u,x x t( ) and v,x x t( ) ns,x x t( )

unvoiced u,x x t( ) v,x x t( ) and u,x x t( ) ns,x x t( )

non speech otherwise

 

 

 
 

 

 
 

    

(4) 

For MFCC vectors classified as voiced, fundamental and formant 

frequencies are computed using MAP prediction, while for 

unvoiced speech only formant frequencies are predicted. The 

predicted acoustic feature vector, ˆ f t k( ) , from cluster k of the 

voiced GMM, k
v

, is computed as, 

ˆ f t k( ) = argmax
f t

p ft x t , k
v( ) 

 
 

 

 
    (5) 

The posterior probability, hk(xt) of the MFCC vector belonging to 

the k
th

 cluster of the GMM can be used to make a weighted MAP 

prediction of the acoustic feature vector from all clusters, 

ˆ f t = hk x t( ) μk
v,f + k

v,fx
k
v,xx( )

1
x t μk

v,x( )
 

 
 

 

 
 

k=1

K v

  (6) 

The posterior probability, hk(xt), of the MFCC vector belonging to 

the k
th

 cluster of the GMM is computed as, 

hk x t( ) =
k
v p x t k

v,x( )

k
v p x t k

v,x( )
k=1

K v
   (7) 

where p x t k
v,x( )  is the marginal distribution of the MFCC vector 

for the k
th

 cluster in the voiced GMM, k
v,x

. 

3. NOISE COMPENSATION 
 

When noise is present in the speech signal the accuracy of acoustic 

feature prediction reduces. The effect of additive noise in the time-

domain will alter the resulting MFCC vector which leads to a 

mismatch with the clean speech GMMs and inaccurate prediction 

of the acoustic features. To improve prediction accuracy in the 

presence of noise, two methods are considered to reduce this 

mismatch between the clean trained GMMs and noise 

contaminated input MFCC vectors. The first method removes noise 

from the input MFCC vectors. This is achieved by spectral 

subtraction where a noise estimate is subtracted from the noisy 

speech [5]. The second method adjusts the statistics of the GMMs 

to model noisy speech. Such adaptation methods have been 

successfully applied to speech recognisers for noise robustness [6]. 

The remainder of this section describes the application of spectral 

subtraction and model adaptation to acoustic feature prediction. 

 

3.1 Spectral subtraction 
 

To apply spectral subtraction, the MFCC vectors received at the 

DSR back-end must be returned to a linear spectral domain where 

speech and noise are additive. This is achieved by first zero 

padding the MFCC vector to the dimensionality of the log 

filterbank vector and applying an inverse discrete cosine transform 

(DCT) to obtain a log filterbank vector, x t
lfb

, 

x t
lfb

=C 1x t    (8) 

Matrix C contain the basis vectors of the DCT, where each element 

cij is given as, 

cij = cos
i j + 0.5( )

J

 

 
 

 

 
 0 i, j J 1  (9) 

Applying an exponential gives linear filterbank vectors, x t
fb

, 

x t
fb

= exp x t
lfb( )    (10) 

It is not necessary to return the filterbank vector to a magnitude or 

power spectrum for subtraction. In fact the wider bandwidths of 

filterbank channels, over those of the spectral bins, leads to more 

stability and reduces the likelihood of processing distortions as a 

result of over subtraction. Of the many variants of spectral 

subtraction, this work uses linear subtraction with an over-

subtraction factor, . Spectral distortion is reduced by a maximum 

attenuation threshold, , rather than a noise floor, which gives 

superior performance over other implementations of spectral 

subtraction. The clean speech filterbank estimate, ˆ s t
fb i( ), for the i

th
 

channel of the t
th

 frame is given as, 

ˆ s t
fb i( ) =

xt
fb i( ) ˆ d fb i( ) xt

fb i( ) ˆ d fb i( ) > xt
fb i( )

xt
fb i( ) otherwise

 

 
 

  
 (11) 

where ˆ d fb i( )  is the noise estimate in the i
th

 filterbank channel. 

This is estimated in speech inactive periods and computed from 

received MFCC vectors using an inverse DCT and exponential 

operation. The clean speech filterbank estimate, ˆ s fb , is 

transformed back to the MFCC domain using log, DCT and 

truncation operations. The resulting noise reduced MFCC vector is 

input into the acoustic feature prediction system of section 2. 
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3.2 Model adaptation 
 

The second noise compensation method adapts the statistics of the 

GMMs to model noise contaminated MFCC vectors. Considering 

equation 3, the MFCC mean vectors and covariances, μk
v,x

 and 

k
v,xx

, need to be adapted to the noise. The acoustic feature means 

and covariances, μk
v,f

 and k
v,ff

, are independent of the noise and 

left unchanged. Similarly, the covariances of MFCCs and acoustic 

features, k
v,xf

 and k
v,fx

, can be left unchanged as the noise is 

uncorrelated with the acoustic features. 

The MFCC means and covariances must be adapted so that 

instead of modeling clean speech they model noisy speech. To 

allow adaptation, the MFCC-domain means and covariances must 

be inverted to the linear filterbank domain where speech and noise 

are additive. First, the MFCC-domain means and covariances are 

zero padded and inverse DCTs applied to obtain log filterbank 

domain means and covariances, μk
x,lfb

 and k
x,lfb

, 

μk
x,lfb

=C 1μk
x

  k
x,lfb

=C 1
k
x C 1( )

T
 (12) 

It is assumed that MFCC vectors exhibit a Gaussian distribution 

which is also true in the log filterbank domain. However, in the 

linear filterbank domain the vectors exhibit a log normal 

distribution. The log filterbank means and covariances can be 

transformed into the linear filerbank domain, μk
x, fb

 and k
x, fb

, [6], 

μk
x, fb i( ) = exp μk

x,lfb i( ) +
diag k

x,lfb i,i( )( )
2

 

 
 

 
 

 

 
 

 
 
 (13) 

k
x, fb i, j( ) = μk

x, fb i( ) μk
x, fb j( )exp k

x,lfb i, j( ) 1{ }  (14) 

The linear filterbank means and covariances of noisy speech, 

μk
y, fb

 and k
y, fb

, are computed by adding the clean speech means 

and covariances to the noise mean and covariance, μ d, fb  and 
d, fb

, 

μk
y, fb

= μk
x, fb

+ μ
d, fb

  k
y, fb

= k
x, fb

+
d, fb

 (15) 

The noisy filterbank means and covariances can be transformed 

back into the MFCC domain using the inverse of equations 13 and 

14. Finally, the noisy log filterbank means and covariances are 

transformed to the MFCC domain, μk
y

 and k
y

, 

μk
y

=Cμk
y,lfb

  k
y

=C k
y,lfb CT   (16) 

These noisy MFCC means and covariances replace the clean 

speech means and covariances, μk
v,x

 and  k
v,xx

, in equation 3. 

 

4. EXPERIMENTAL RESULTS 
 

The aim of these experiments is to examine the effectiveness of the 

noise compensation methods when applied to acoustic feature 

prediction from MFCC vectors in noise. Two speech databases are 

used for evaluation to allow comparisons between speaker-

dependent and speaker-independent prediction. The speaker-

dependent database is taken from a single female US English 

speaker and comprises 589 sentences for training. A further 246 

sentences, containing approximately 130,000 vectors, are used for 

testing. Reference fundamental frequency and voicing is obtained 

from a laryngograph while formant frequencies were obtained 

using LPC and Kalman filtering [7]. The speaker-independent 

database is the VTR (vocal tract resonances) database which is a 

subset of the TIMIT database [8]. Training uses 324 sentences 

taken from 173 male and female speakers. For testing a set of 192 

sentences are used, comprising 57,823 vectors, which are recorded 

from a different set of 24 male and female speakers. Hand 

corrected formant frequencies are provided while the YIN 

algorithm was used to obtain reference fundamental frequency [9]. 

Both databases were downsampled to 8kHz and 13-D MFCC 

vectors extracted from 25ms frames at a rate of 100 vectors per 

second in accordance with the ETSI Aurora standard. 

Before presenting experimental results the error measures used 

to measure prediction accuracy of the acoustic features must be 

defined. The accuracy of identifying voiced frames is measured 

using the percentage voicing classification error, Evc, defined as, 

Evc =
Nv nv +Nnv v

NT
100%   (17) 

Nv|nv is the number of unvoiced or non-speech vectors that are 

incorrectly classified as voiced, Nnv|v is the number of voiced 

vectors that are incorrectly classified and NT is the total number of 

vectors in the test set. Fundamental frequency prediction is 

measured using the percentage fundamental frequency error, Ep, 

E p =
1

NV

ˆ F 0t F0t

F0tt=1

NV

100%  (18) 

ˆ F 0t  and F0t  are the predicted and reference fundamental 

frequency of the t
th

 frame. Ep is measured for all frames labeled as 

voiced, Nv, according to the reference voicing. This ensures 

voicing classification errors do not influence Ep which is likely in 

noisy speech. Classification of frames as speech or non-speech is 

measured by the percentage speech activity classification error, Esc, 

Esc =
Ns ns +Nns s

NT
100%   (19) 

Ns|ns is the number of non-speech vectors that are incorrectly 

classified as speech, Nns|s is the number of speech vectors that are 

incorrectly classified as non-speech. Finally, formant frequency 

prediction errors are averaged across all four formants to give the 

percentage formant frequency error, Ef,  

E f =
1

4 NV q=1

4 ˆ F q( )t
F q( )t

F q( )tt=1

NS

100%  (20) 

where ˆ F q( )t
 and F q( )t  are the predicted and reference frequency 

of the q
th

 formant for the t
th

 frame. Similar to Ep, formant 

frequency errors are measured for all reference frames labeled as 

speech, Ns, to ensure classification errors do not influence Ef. 

 

4.1 Speaker-dependent acoustic feature prediction 
 

This section examines noise compensation for speaker-dependent 

acoustic feature prediction where GMM training and testing uses 

the speaker-dependent database. Table 1 shows voicing 

classification error, Evc, fundamental frequency error, Ep, speech 

classification error, Esc, and formant frequency error, Ef, for clean 

speech and speech contaminated with white noise at SNRs of 

20dB, 10dB and 0dB. Results for no noise compensation (NNC), 

spectral subtraction (SS) and model adaptation are shown and these 

all use clean speech trained GMMs. To indicate likely best 
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performance in noise, the final column (Match) shows performance 

when the GMMs are trained and tested in the same noise 

conditions. In practice matched condition training and testing is not 

feasible but it does provide an upper bound on performance. 

 

Error  Noise NNC SS Adapt Match 

Evc Clean 5.50 5.50 5.50 5.50 

 20dB 6.06 6.83 5.28 5.33 

 10dB 10.88 8.02 7.14 6.43 

 0dB 41.45 14.92 16.17 11.10 

Ep Clean 5.26 5.26 5.26 5.26 

 20dB 9.49 9.01 6.91 5.80 

 10dB 13.95 12.93 9.17 7.71 

 0dB 22.13 19.04 14.46 11.34 

Esc Clean 3.58 3.58 3.58 3.58 

 20dB 18.16 18.16 17.90 11.80 

 10dB 18.84 18.11 23.21 16.43 

 0dB 18.10 18.13 18.31 22.51 

Ef Clean 10.00 10.00 10.00 10.00 

 20dB 21.74 20.27 18.41 14.24 

 10dB 25.07 24.22 20.68 16.47 

 0dB 26.11 31.78 25.52 20.74 

Table 1. Speaker-dependent acoustic feature prediction errors on 

clean and noisy speech for no noise compensation (NNC), spectral 

subtraction (SS), model adaptation and matched training/testing.  
 

The results show that prediction of all acoustic features deteriorates 

as SNR reduces. With no noise compensation, voicing and 

fundamental frequency errors increase, although at a lower rate 

than speech classification and formant frequency errors. In 

particular, noise causes speech/non-speech classification to return 

nearly all frames as being speech, hence the convergence of Esc to 

around 18% as SNR falls. Both noise compensation methods 

improve prediction accuracy with model adaptation generally 

outperforming spectral subtraction. Matched conditions shows the 

upper bound on performance and in many cases adaptation 

performs close to this level. Compensation against speech 

classification errors is most difficult to achieve, with even matched 

training/testing performing poorly. 

 

4.2 Speaker-independent acoustic feature prediction 
 

This section examines noise compensation on acoustic feature 

prediction for speaker-independent speech. Table 2 shows acoustic 

feature prediction errors in the same format as table 1. In clean 

speech, errors are higher for the speaker-independent system than 

for the speaker-dependent system. This is explained by the larger 

variances of the speaker-independent models arising from the 

larger variation in speech sounds. In noise, the speaker-

independent system generally performs worse than the speaker-

dependent system, with the exception of formant frequency 

prediction. Applying noise compensation increases acoustic feature 

prediction accuracy in noise at all SNRs, although the amount of 

improvement is less than with speaker-dependent prediction. This 

is attributed to the wider variances of the speaker-independent 

models already providing some noise robustness, making the 

application of explicit noise compensation less marked. This is 

confirmed by the smaller differences between NNC and matched 

training/testing on the speaker-independent system in comparison 

to the speaker-dependent system. 

 

 

Error  Noise NNC SS Adapt Match 

Evc Clean 11.72 11.72 11.72 11.72 

 20dB 12.15 11.72 11.66 12.22 

 10dB 13.77 12.76 11.81 12.71 

 0dB 24.23 25.15 21.54 13.89 

Ep Clean 10.37 10.37 10.37 10.37 

 20dB 15.35 14.09 13.82 12.96 

 10dB 26.39 23.64 21.98 19.60 

 0dB 33.72 33.41 29.16 25.52 

Esc Clean 8.14 8.14 8.14 8.14 

 20dB 13.37 13.31 13.04 12.10 

 10dB 13.38 13.36 13.36 16.84 

 0dB 13.38 13.38 13.42 20.01 

Ef Clean 11.71 11.71 11.71 11.71 

 20dB 13.07 12.94 12.90 12.58 

 10dB 14.82 14.27 14.09 13.53 

 0dB 16.59 16.42 16.24 14.78 

Table 2. Speaker-independent acoustic feature prediction errors on 

clean and noisy speech for no noise compensation (NNC), spectral 

subtraction (SS), model adaptation and matched training/testing.  

 

5. CONCLUSION 
 

This work has shown that noise compensation can be successfully 

applied to MAP prediction of acoustic features from MFCC 

vectors. Filtering the noise using spectral subtraction generally 

performs less effectively than adapting the speech models to model 

noisy speech. It is interesting to note that a model adaptation type 

of compensation cannot be implemented in most traditional 

methods of fundamental frequency and formant frequency 

estimation [7][8]. However, the statistical modeling approach used 

here can benefit from adaptation. Similar results in robust speech 

recognition have also been observed where adaptation techniques 

generally outperform filtering methods for noise robustness. 
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