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ABSTRACT

In this contribution, a time-varying linear prediction is proposed
for speech analysis and synthesis. In comparison to the time-
invariant prediction, the predictor coefficients are time-varying
within the frames. For that purpose, the coefficient trajectories can
be described by basis functions. This approach leads to
discontinuities between the frames if the frames are analyzed
independently. Therefore, continuous conditions are defined which
force continuous trajectories also between the frames. The
estimation of the optimum coefficients of the basis functions is
solved analytically by a least mean square approach. The analysis
results show that the estimation algorithm achieves smooth
trajectories of the vocal-tract resonances together with a high time
resolution, which is interesting for a variety of application.

Index Terms— Time-varying filters, Prediction methods,
Speech analysis, Speech synthesis

1. INTRODUCTION

Linear prediction is a commonly used technique in the field of
speech processing. Since speech utterances are not time-invariant,
the speech signals are usually segmented into frames, which are
analyzed independently by one of the time-invariant prediction
algorithms such as the autocorrelation, covariance, or Burg method
assuming stationary statistics within the frames [1]. For
nonstationary estimation of audio and speech signals, some
approaches exist allowing also time-varying coefficients of the
underlying model. A general approach is to use adaptive
algorithms like LMS, RLS or Kalman filter [2]. One more
specialized approach is the time-varying autoregressive modelling
technique (TVAR). These methods estimate an AR model with
time-varying coefficients; the coefficients can be described by
basis functions, e.g. in [3]-[5]; in [5] also ARMA is treated. For
abrupt changes of coefficients the consideration of smoothness
prior (SP) is suitable [6]. A more statistical approach of estimating
time-varying AR models for example is described in [7]. In [8]-[9],
a time-varying linear prediction is proposed for speech analysis
and pre-emphasis, which assumes piece-wise linearly time-varying
coefficients. In contrast to that, in this contribution a time-varying
prediction algorithm is proposed based on basis functions and,
additionally, on continuous conditions, which ensure continuous
connections of the basis functions between the frames.
Furthermore, the time-varying prediction is discussed for speech
analysis and synthesis techniques regarding which benefits can be
expected from time-varying approaches.
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2. TIME-VARYING LINEAR PREDICTION

In the case of time-varying prediction, the predictor coefficients are
time-dependent. For a segment-wise analysis, the signal x(n) to
be analyzed is segmented into P non-overlapping frames

x(n) =... X" (LY, x*Q),x5(2),...x (LY), ¥ (),...;

k—thframe

with k£ =1...P . The superscript denote the corresponding frame of
length L. The time-varying linear prediction for the A-frame can
be described in generally by

Fmy=3" atm) (-0, (1)
#*(n) is the estimation of x*(n) and the superscript k denotes the
frame. If i>n is valid, the values of x*(n—i) in Eq. (1) are
defined by values of the previous frame with
X (m)=x""L T +1-m) for m=>0.

To ensure continuous functions of the predictor coefficients and to
reduce the number of parameters, the predictor coefficients can be

described by a superposition of basis functions ¢”*(n) leading to

k M ik )k
af(my=3 d"* ¢ (n). ©)
Hence, the coefficient trajectories are determined by the parameters
d/* . Here, the first basis function ¢**(n)=1 is defined constant
to one describing the stationary component of a/(n) , whereas the
functions ¢/*(n) with j>0 are time-varying and describe the

nonstationary components. The signals and basis functions of each
frame can be described vector-based by the definitions:

X= (=i D), = (M) @)t (@)

P =($7 ), 97 @), (D) and Wit =g @
the operation ® describes the element-by-element multiplication
with w/* =p”* ® x* — w/*(n)=¢’""(n)-x*(n). The vector x}
represents the k-th frame whereas x* for i>0 represents the
shifted k-th frame with a shifting of i samples. The prediction error
vector e* of the k-th frame is defined by

N M

e =xg -3 > (d" wt) 3

i=1 j=0
with values e*(n) = x* (n) — £*(n) . Considering w** = x* due to
#**(n) =1 and solving Eq. (3) for the vector x} lead to
N M

xt=d? X +ZZ(d{"k ~w,.j”‘)+e" for k=1...P. (4)

i

i=1 j=1
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Eq. (4) represents a vector expansion of x! by the basis vectors
w/* =p’* ® x*, which are the basis functions multiplied by the

k

signal values. The error of approximation is e" representing the

prediction error. The coefficients d/* can be determined by

regression minimizing the norm of the error vector |e* | for each

frame k separately. However, in this way the segments would be
analyzed independently, which causes discontinuities. To consider
the continuous movements of the vocal tract, the coefficients
should evolve continuously in time, also across frames. Therefore,
a continuity condition is defined by

al (L] = a/"'(1) ®)
zl Od,jk ¢/k(L ) zl Od'/kﬂ ¢1A+I

ensuring that the last coefficient value a’(L"]) of each frame k is

connected continuously to the first value a/*'(1) of the next frame.
Eq. (5) implies a coupling of Eq. (4) for k =1...P . Solving Eq. (5)

for the coefficient d* results in

dio,k+| _ (fo:od‘,.k " A(L )— Z, ld,j e " k+1(1))/¢0 k+l(1) (6)
Eq. (6) shows that the coefficients d** with k >1 are determined

by the other coefficients, which reduces the number of parameters

to be estimated. The coefficients d"' remain which represent the

stationary components. Eqs. (4) and (5) can be combined in one

vector expansion or one single system of equations covering the

frames k =1...P. For that purpose, the vectors of each frame are

arranged on top of each other, which leads to the combined vector
equation

N P

gy=2d" ¢/ +%

i=1 k=1 i

with the vectors ¢’ and ¢/* for k=0...P defined by

i

(d’k fk) (7

™M=
M=

1 J.l Jsl J>l

X; w; u; 0P
x; v 5 uly
v‘:r;f ui,;.kkfl .
q/=| i gl =] ¢ gt = wit o gt =
. Vli/')‘,kﬂ
' ul;”!
x/ v/ v/ w)?

and with the vectors u/* =¢""(1)-x} and v/t =¢"" (L") x*

im

one after the other for
. The vectors

The vector e contains the vectors e*

k=1...P, analogously to the vectors ¢’ and ¢/*

Jk
im

u/* and v/* considers the continuous condition of Eq. (5). This

is explained in the following by regarding the vector ¢/*. The

vector ¢/* includes the sub-vectors wl%, v/%, and w/*. The
vectors  u’’ * and vj * imply the values ¢”*(1) and ¢"*(L"),

respectively, and are arranged before and after the vector w/*
Since the vector w/* contains function values ranging from

¢ (1) to ¢"*(L"), the arrangement of the sub-vectors ensures a
continuous trajectory of the predictor coefficients for all vectors
. This is achieved by the extension of the boundary coefficient
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values ¢”*(1) and ¢"*(L") of w/t=¢/* @x"
wt =1y xt and

vIE =g (L) X1 with 1> 0. The optimum solution of Eq.

im

to the other

frames by introducing

(7) is determined by regression minimizing the length of the error
vector or the power of the prediction error, respectively.

For an efficient calculation of the prediction algorithm, the
sequence of frames can be segmented into overlapping sub-
sequences of frames which are processed analogous to Eq. (7) by
regression one after the other. To consider the continuous
condition between the sub-sequences, the constant coefficients

d®' are adopted from the analysis of the previous sub-sequence.

2.1. Basis functions

The basis functions ¢’*(n) describe the space of the possible
parameter trajectories. The constant term ¢ (1) =1 is used for all

different types of basis functions. For defining the basis functions,
the definition of the linear sequences

6, =(0,1,.L-D)TAL-1) and 6/ (n)=(L-1,...1,0)" /(L-1)
of length L ranging from zero to one and reversed are useful. Basis
functions can be defined by applying a function f to 6. The use
of 6/

cannot

can be suitable if d- f(8) with an arbitrary coefficient d

time-reversed counterpart f(6"); for
examples, this is the case for polynomials. The simplest time-
varying basis functions is the linear function

||n (I’l) I (n) >

which describes a straight line. L* is equal to the length of frame
k. Polynomial basis functions are defined, here, by

poly (n) ( (n))(j+1)/2
and ¢y (n) = (6 ()’

poly

describe its

for even indices j=1,3,....M
for odd indices j=2,4,...M —1.

Since ¢p;)|y is the linear function ¢, and the following basis

functions are the polynomials alternating with their reversed
counterparts, even numbers M are appropriate.

Another type of basis functions is motivated by the periodic
behavior of the glottis termination of the vocal tract. For that
purpose trigonometric basis functions are defined by

o F(n) = s1n( ()27 (j + 1)/2) for even indices j=1,3,.M —1
By () = cos(HLk (n)- 27rj/2) for odd indices j=2,4,...M .

3. ANALSYSIS AND SYNTHESIS OF SPEECH

For speech analysis, the speech signal is segmented into adjoining
non-overlapping frames. Then, the segmentation together with the
basis functions determine the vectors ¢’ and ¢/* . The regression
of the vector expansion (7) yields the optimum predictor
L, dl(1),d{(2),..af (LY, @l ().

k—thframe

coefficients a,(n)=...a

by the estimated coefficients d/* for the whole analyzed signal

x(n) . To obtain a reduced number of coefficient sets, the
sequences of the coefficients «,(n) are down-sampled by selecting

every L™®-th sample, which leads to the sequences



a"=al(m-L%®) . If the transfer function H(a,,z) corresponds
to the coefficients a;, the transfer functions H,=H(a",z)

represent a sequence of transfer functions implying a step size of
L** samples. Figure 1 shows the transfer functions estimated
from the utterance [jUlla] by time-invariant and time-varying
prediction of order N =24 with a step size L% of 100 samples.
The sampling rate of the analyzed speech is 16 kHz and the
prediction order is N =24 .
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Figure 1: Estimated magnitude responses of utterance [jUlia]: (a)
time-invariant prediction; (b) time-varying prediction with linear
basis without continuous condition; (c)-(d) time-varying
prediction with continuous condition, (c¢) linear basis and (d)
polynomial basis with M =5 ; frame length is 300 samples for (a)-
(c) and 800 samples for (d).

For comparison, Fig. 1(a) represents the conventional time-
invariant prediction which is performed by the covariance method
with overlapping frames with a length of 300 samples. Figs. 1 (c)
and (d) represent the results by the proposed time-varying
prediction with linear and polynomial basis functions, respectively,
and with the continuous condition. It can be seen that the spectral
trajectories of the time-invariant (graph (a)) and time-varying

approach (graphs (c)-(d)) show similarities; however, the time-
varying approach leads to a smoother trajectory. With larger frame
lengths also the time-invariant approach yields smoother
trajectories, but the time resolution can be decreased. Figs. 1(c)
and (d) demonstrate that similar results can be achieved with linear
and polynomial basis functions. For that, the frame length for the
prediction with polynomial functions should be larger than that for
the prediction with the linear functions. Fig. 1(b) shows the time-
varying analysis with same conditions as used for Fig. 1(c), but
without using the continuous condition, which leads to fluctuating
trajectories. The results of Fig. 1(b) are obtained by considering
Eq. (4) only. This demonstrates that the introduction of the
continuous condition by Eq. (5) is sensible.

3.1. Formant patterns

From the estimated sequence of predictor coefficients the
corresponding roots can be calculated from which the resonance
trajectories can be obtained. In Fig. 2 the frequencies of the roots
are depicted representing the estimated trajectories of the formant
or resonance frequencies obtained from the utterance [laN@wall].

& frequency [kHz] o

time [steps of 50 samples]

Figure 2: Estimated resonances from the utterance [laN@wall]:
(a)-(b) time-invariant prediction with frame length 600 samples;
(c)-(d) time-varying prediction with polynomial basis, continuous
condition and frame length 400 samples;, (a) and (c) with
prediction order N =20 and with pre-emphasis; (b) and (d) with
prediction order N =24 and without pre-emphasis.

Figs. 2 (c) and (d) are obtained by time-varying prediction with a
frame length of 400 samples, whereas Figs. 2 (a) and (b) is
obtained by time-invariant prediction with a frame length of 600
samples. Although the time resolution of the time-varying
estimation is better, the trajectories of the time-varying estimation
are equal or more smooth than those of the time-invariant
estimation. Figs. 2 (a) and (c) show analysis results with pre-
emphasis and Figs. 2 (b) and (d) without pre-emphasis. Since the
pre-emphasis compensates the so-called glottal formant, the
prediction order without pre-emphasis is chosen higher than with
pre-emphasis. The pre-emphasis is performed adaptively by a
linear prediction of order one [1]. The pre-emphasis is repeated
twice by using the prediction error as input signal for the next pre-
emphasis. The error signal of the last prediction of order one
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represents the pre-emphasized speech. In the time-varying case,
also the time-varying prediction of order one is used [8].

Analyses of several utterances indicate that for the time-varying
prediction the resonance patterns are more invariant against
variations of prediction order and pre-emphasis than the time-
invariant prediction. Furthermore, the investigations show that in
the case of noisy speech the resonance trajectories are relatively
smooth, even in the disturbed spectral regions.

3.2. Periodic basis functions

The time-varying prediction with frame lengths which are small
compared to the pitch period leads to fluctuating trajectories.
These fluctuations are caused by statistical effects and by the
voiced excitation. Therefore, to obtain smooth trajectories the
frame length should be larger than the pitch period. The following
example shows that if the basis functions allow dents in the
coefficient trajectories within pitch periods, the excitation is
affected by the linear prediction. For that purpose, trigonometric
basis functions are used. The frame length is pitch-synchronous
two or three pitch periods. The trigonometric functions are chosen
in a way that the periodicity of the sine and cosine functions
corresponds to the pitch periods. For that purpose, a selection '
of indices j of the trigonometric basis functions is chosen
corresponding to the number R of pitch periods in each frame. This
means that, for example, if the frames are exactly two periods long,
the functions ¢/ (n) with the indices ;'=3,4,7,8,11... are
chosen. From Fig. 3, it can be seen that the inclusion of the
trigonometric functions decreases significantly the prediction error
power and affects the peaks of the glottal excitation.

(a)

! (c)

1000 " 2000 time [samples] 4000

Figure 3: Prediction error signal of voiced speech by time-varying
prediction of order N =24, the frame length is pitch-synchronous
2 periods for (a),(c) and 3 periods long for (b); (a) linear basis
only, (b) linear basis and 4 trigonometric basis functions, (c) linear
basis and 6 trigonometric basis functions.

3.3. Synthesis by time-varying prediction

Besides considering spectral trajectories, also re-synthesis is useful
to asses the estimation results. For examples, the re-synthesis
reveals that the speech quality is not always correlated with the
prediction gain and that the trajectories of the coefficients and
resonances should be smooth, but not too smooth, since over-
smoothing can also degrade the speech quality. To realize the re-

synthesis, the estimated sequences of predictor coefficients a;" are

used for controlling an all-pole system. The excitation of the all-
pole system is independently of the analyzed speech. Since the
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predictor coefficients can lead to unstable systems, the coefficients

m

a;" are checked for stability. In case of instability, the roots z;" of
the polynomial with coefficients @," are calculated and the radii of

the unstable poles z; with index i=A are pulled into the unit

circle by changing the radius of each unstable pole by

m

|z'"|=1/]z} | . After exchanging the roots z} :=z')", the roots are

converted back into coefficients. unstable
configurations occur not often.

Overall, the re-synthesis indicates that the time-varying prediction
algorithm is suitable for synthesis techniques and can lead to a
moderately different speech quality compared to time-invariant
prediction. It seems that fast sound transitions can be better
produced by using the time-varying prediction. It should be
considered, that not only the best possible speech quality of re-
synthesis is important, since for applications such as parametric
synthesis or speaker transformation also the trajectory of the
spectral envelope has to be modified; for that purpose, the
availability of suitable resonance trajectories can be important, too.

Fortunately,

4. CONCLUSIONS

A segment-wise time-varying prediction algorithm is proposed for
speech analysis and synthesis. To yield smooth coefficient
trajectories of the basis functions between adjacent frames,
constraints are defined ensuring continuous frame connections. On
these constraints, the optimum coefficients of the basis functions
can be estimated quasi-analytically by a least mean square
approach. The investigations show that the proposed algorithm
achieves smooth spectral trajectories together with a high time
resolution which can be utilized for speech analysis and synthesis.
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