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Abstract

This paper presents a method for modeling the envelope of spectral
amplitude parameters of speech signals in “two dimensions” (2D).
It consists of two cascaded modelings: the first one along the
frequency axis is the usual cepstrum technique, which consists of
modeling the log-scaled spectral envelope with a Discrete Cosine
Model (DCM). The second one, along the time axis, consists of
modeling the trajectory of the envelope DCM coefficients by
another similar DCM model. An iterative algorithm is proposed to
optimally fit this 2D-model to the data according to a perceptual
criterion based on frequency masking. This approach is shown to
provide an efficient and flexible representation of spectral
amplitude parameters in terms of coefficient rates, while providing
good signal quality, opening new perspectives in very-low bit-rate
sinusoidal speech coding.

Index Terms— speech analysis, speech processing, speech
coding, speech modeling, speech synthesis.

1. Introduction

The parametric modeling of the spectral envelope of speech signals
is a very classical problem in speech processing. It has many
applications in speech coding and speech synthesis (including
speech transformation). The most well-known techniques are
probably the linear predictive coding (LPC) [1] and the discrete
cosine model (DCM), which is also known as (discrete/parametric)
cepstrum modeling [2][3] when applied to log-scaled amplitudes.
Since speech signals are non-stationary, such spectral envelopes
are generally estimated on a short-term (ST) basis: the length and
shift of analysis/synthesis frames are generally of about 10-30ms.
In this paper, we deal with the problem of efficiently representing
the time-evolution of the spectral envelope on a so-called long
term (LT) basis, i.e., from several tens of ms to several hundreds of
ms and more. The objective is to provide a compact/sparse and
flexible (i.e., with dimensions adapted to local signal character-
istics) representation of the 2D smooth spectral envelope. Such
representation can be used in speech coding, and in speech
transformation systems based on 2D spectral envelope as, e.g., [4].

For this aim, we build on previous works. In [5][6], we
proposed to model the LT trajectory of the amplitude of individual
speech harmonics using a DCM. An iterative algorithm including
perceptual constraints was proposed to jointly estimate the optimal
order of the model and its coefficients. This led to a significant
reduction of the coefficients rate compared to harmonic ST
modeling. In [7], this approach was applied to LSF coefficients
that encode the LPC spectrum envelope, using a spectral distortion
measure criterion. It was combined with multi-stage vector
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quantization to provide efficient very-low bit rate LSF coding. A
similar approach, using a polynomial model, was proposed by Dusan
etal. in[8].

In the present paper, we extend the long-term modeling to the
cepstrum model: we first model the (log-scaled) envelope of
speech spectra by a DCM (Section 2.2). This is done on a usual
short-term basis [2][3]. Then we apply a second DCM along the
time axis to model the trajectory of the resulting cepstrum
coefficients on long sections of speech (Section 2.3). This results
in a “2D cepstral model”. It is important to note that the present
work is not a simple replica of [7] using a cepstrum model instead
of the LPC model: In the present work, both the cepstrum order
and the temporal model order are variable from one 2D-modeled
speech section to the other (whereas the LPC order was fixed to 10
in [7]), and must be estimated. For this aim, we present in Section
2.4 a new iterative algorithm that exploits a perceptual criterion.
The proposed method is evaluated in Section 3 in terms of
“goodness of fitting”, perceptual quality, and coefficient rate.

2. 2D-Cepstrum Modeling

2.1. Analysis

In the present study, we only consider continuously voiced speech
sections, considered as (full-band) harmonic signals. The proposed
method can be easily applied to sections of unvoiced (or mixed
voiced/unvoiced) speech. The signal is thus first segmented into
voiced and unvoiced parts, using the fundamental frequency
(denoted a for frame k) estimation algorithm of Praat [9]. Then,
for a given voiced section s(#), running arbitrarily from n=0 to N,
the successive sets of amplitude parameters to be 2D-modeled are
extracted on a short-time basis. We used a classical least mean
square (LMS) fitting of the harmonic model (using the @y
measures) with the signal [10]. It provides accurate parameter
estimation with very low comput-ational cost. A 25ms analysis
window was used, with a hop-size of 20ms, so that the parameter
rate is of 50 amplitude vectors per second. This results in K
vectors A* = [4,; Ay ... Aus]', k=1 to K (' denotes the transposed
vector/matrix). The vector dimension /; can vary from one frame
to the other, due to the variation of the fundamental frequency.

2.2. Modeling of the spectral envelope

Cepstrum modeling consists of replacing each set of (log-scaled)
amplitudes by a sum of cosine functions [2][3]:

A (@) =d,, + 2% d,, cos(mo) M

m=1
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Here, the cepstrum order, denoted M, is variable from one
considered speech section to the other, but it is fixed on each
section. This enables: (i) to solve the “variable size problem” of the
amplitudes set from one (short-term) analysis frame to the next, (ii)
to reduce the size of the parameter set to be time-modeled, since M
is generally significantly lower than the size of the amplitude
vector; This is a major point for potential application of the
proposed method to very low bit-rate speech coding; and (iii) to
make frequency transformations such as pitch-scaling easier.

We will see in Section 2.4 how M is estimated for each 2D-
modeled section. Given M, each vector Df = [doy dij ... dM,k]’ of
model coefficients is estimated by a LMS fitting of the DCM with
the measured (log-scaled) amplitudes, i.e., minimizing:

I,

&=

i=l

Ay = ’ak (i) ’ @

If H; denotes the I, X (M+1) matrix of general entry h;,=
cos(miay ) (with a factor 2 for columns with m>1), and assuming
M+1<1I;, we have:

D' =(H,H,)'H,A" 3)

2.3. Modeling the cepstrum coefficients trajectory

Once the spectral envelope modeling has been done for all (short-
term) frames of the considered speech section, the second step of
the proposed 2D-method is the modeling of the time-trajectory of
the envelope DCM coefticients. Thus, these coefficients are now
considered along the time axis as M+1 sets of K-vectors (as we
directly did for amplitudes in [5][6]): D, =[dw1 dn2 ... duxkl,
m=0 to M. A second Discrete Cosine Model is then applied on
each of these M+1 trajectories:

Pm

dAm (n)=c,,+ 22 Cop cos(plzij 4)
p=0 N

The model order P,, depends here on the rank m of the envelope

coefficient. For simplicity, in this study we set the same order

P,, = P for all vectors D,,, m =0 to M. The model coefficients c,,,

are estimated by minimizing the weighted error:

K

5m=2wk

k=1

d,,—d,n)| (5)

where the indexes n; are the centers of the K analysis frames. Let
M denote the (P+1) X K matrix of general entry m,,; = cos(pmn/N),
W denote the KxK diagonal matrix that contains the squared
weights of (5) on its diagonal (see Section 2.4), and D denote the
matrix that gathers the vectors D,. Assuming P+1<K, the
(M+1) x (P+1) matrix of optimal model coefficients is given by:

C=DWM'(MWM')" (6)

2.4. 2D-Model orders estimation and fitting algorithm

The evolution of the spectrum envelope can vary widely, for
example depending on the length of the considered voiced section,
the phoneme sequence, the speaker, the prosody, etc. Thus, we
present next the algorithm that is proposed to jointly estimate the
orders M and P, the weight matrix in (6), and of course, the 2D-
model coefficients C. This algorithm is applied independently to
each voiced section of K frames. Note that the proposed 2D
modeling can be efficiently exploited in very low bit-rate speech
coding if in practice the estimated order P is generally found to be

significantly lower than K. The algorithm is split in two parts: The
first part consists of tuning M to jointly fit K optimal envelope
models to the K amplitude sets according to a mean perceptual
criterion. These envelope models are then used in the second part of
the algorithm which deals with the time-dimension modeling.

Algorithm for 2D-cepstrum modeling (M is initialized to an
arbitrary value, typically 10; R;p and R,p are user-defined ratios
lower than 1; typically, R;p = 0.70 to 0.90, and R,, < R;p)

First part: perceptual cepstrum modeling

1) For k=1 to K, calculate the frequency masking threshold
T = [T(any) Tany) T(Iyan,)]" associated with the
amplitude vector A* by using the model of [11].

2) For k=1 to K, calculate the cepstrum vector D¥ with (3).
Calculate the modeling error power function (square denotes
the entry-wise square function):

f(EF) = %square(Ak -H,D")

Calculate the percentage Ry of positive entries in T"-AE") (i.e.,
the percentage of harmonics correctly modeled according to the
perceptual criterion).

3) Calculate R, the mean value of Ry across k. If R,,..,=>R;p, M is
decreased by 1, else M is increased by 1. Then return to step 2
until the minimum value of M for which R,,,.,,>2R;p is found and
selected.

Second part: time-modeling of the cepstrum coefficients

4) Initiate P to an arbitrary value significantly lower than K| e.g.,
set P to the entire part of K/4. Calculate the weight matrix of (6)
by w;=1/8D;, with:

I .
SD, = \/]iz[zologm A, —20log,, AM]Z

koi=1
5) Calculate the model matrix C with (6).

6) Decode the K envelope models with: D =CM . Let D* denote
the k-th column of D.

7) For each time index k=1 to K, decode the 2D-modeled
amplitudes with: A% = Hk]N)k.

8) Calculate the new value of the ratio R, of step 2 after
replacing the amplitudes modeled in the first part of the
algorithm with the 2D-modeled amplitudes of step 7. If
Rean2Rop, P is decreased by 1, else P is increased by 1. Then
return to step 5 until the minimum value of P for which
Rean=R>p is found and selected.

Note that the time weights in Step 4 are used to take into account the
relative accuracy of the cepstrum models across frames. The spectral
distortion SD; is very usual in speech processing [12]. The more
accurate is the envelope model on a given frame, the lower is the
corresponding spectral distortion, and the larger is the weight of that
frame in the time-modeling process. This weighting process has been
shown to generally provide a better global fitting of the 2D-cepstrum
compared to if no weights are used.

2.5. Synthesis

For the evaluation, synthesis signals were generated from the 2D-
modeled amplitudes. Usual frame-to-frame linear interpolation of the
amplitudes was used, as well as interpolation of frequencies and
phase measured parameters, followed by an application of the
equations of the sinusoidal model of speech, as in [13]. This step
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includes a “birth and death” process (i.e., interpolation from or
towards zero) for components that go above the Nyquist frequency.
Note that a low-bit rate speech coder that would use the proposed
method would include the coding of the fundamental frequency
trajectory which is used in Step 7 (in matrix Hy). In this paper, the
modeling process only concerns the voiced parts of speech. Thus,
the unvoiced sections are unchanged and concatenated with the
2D-modeled voiced sections with local overlap-add windowing to
avoid audible artifacts [10].

3. Experiments

To test the presented method, we used 8 kHz signals of continuous
speech produced by 12 different speakers (6 male speakers and 6
female speakers). About 3500 voiced segments of different sizes
were modeled, representing more than 13 minutes of speech.

3.1. General observations and modeling accuracy

First, for suitable R, values (say around 0.75), the algorithm was
shown to adapt correctly to the different “shapes” of the modeled
speech sections. For example, along the frequency axis, the order
M was shown to vary from low values (e.g., 4) for spectra with
poor relief, to usual values for female speech coding (e.g., 10-11)
and male speech coding (e.g., 15-16, see [1]), and more for “rich”
spectra. Along the time axis, the order P also varied a lot,
depending on the length and the content of the 2D-modeled
section. It was found to be generally significantly lower than K.
The modeled trajectories of the cepstrum coefficients are thus
smoothed versions of their raw trajectories, since the model is
composed of smooth cosine functions (see Fig. 1). Yet, the 2D-
modeling was shown to provide amplitudes trajectories that are
close to the measured amplitudes. This is guaranteed by the
perceptual constraint that guides the behavior of the fitting
algorithm: At the end of the algorithm, R, percent of the 2D-
modeled amplitudes are assumed to fulfill the perceptual constraint
(i.e., the modeling error is below the masking threshold model, and
is thus expected to be inaudible). By choosing the settings of R;p
and R,p, one can balance the modeling accuracy between the
frequency and time dimensions. Different values of R;, for the
same R,p can lead to quite different results. A good balance is
generally obtained with R,p = 0.85XR;p. In the next section, we
give a quantitative assessment of this point.

3.2. Coefficient rates

In this sub-section, we report average rates for the coefficients of
the 2D-model (i.e., the coefficients of C which is the information
to be transmitted to encode the spectral amplitudes with the 2D-
technique). Table 1 provides the results that were obtained on the
entire test database by varying both R;p and R;p, for both female
and male speech. Optimal rates, defined as the lower values
obtained for each fixed R, value are marked in grey cells. It can
be seen that these optimal values are regularly distributed (on an
inner diagonal). This shows that a reasonable difference between
R,p and R;p must be assumed. Indeed, we observed that a too low
value of R;p provides poor spectral modeling which cannot be
compensated by an accurate time-modeling of the resulting
coefficients. On the other hand, for a given R,p, increasing the
accuracy of the envelope modeling by increasing R;, beyond the
optimal value leads to increase the coefficient rate in a useless
manner. Finally, a 10% difference (or again, an about 0.85 ratio)
between R, and R seems appropriate.
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Figure 1: 2D cepstrum modeling for a long voiced section (1.1s of
male speech at 8 kHz, K=55). Three first figures: time-trajectories of
the 3 first cepstrum coefficients: original coefficients (i.e., from (3);
raw blue lines) and modeled coefficients (smooth magenta line);
Three last figures: amplitude trajectories of the 3 first harmonics:
original measures (raw blue lines) and 2D-modeled amplitudes
(smooth magenta lines). R;p =0.90, R,,=0.70, M =13, P=19.

7 80%| 75%| 70%]| 65%| 60%]| 80%| 75%| 70%| 65%| 60%
90% 345( 296 | 248 | 207 | 175 422 | 384 | 323 | 279 [ 244
85% 361 | 266 | 222 | 183 | 153 | 462 | 321 | 278 | 234 [ 203
80% * 273 [ 205 | 167 | 137 * 338 | 246 | 205 | 174
75% * * 208 | 158 | 126 | * * 254 [ 189 | 157
70% * * * 159 | 120 || * * * 192 | 141
65% * * * * 121 | * * * * 146

1D 395] 341 ] 297 ] 260 | 230 || 462 | 395 | 334 | 280 | 243
Gain 12.7] 22.0] 30.1] 39.2] 47.8| 8.7 | 18.7] 26.3]| 32.5] 42.0

Table I: Coefficient rates of the amplitude 2D-model for the female
voices (on the left; averaged over 1800 speech segments) and for the
male voices (on the right; averaged over 1700 speech segments), and
for different {R;p ; R,p} configurations. “1D” stands for the 1D-
model used as a reference (see the text), and “Gain” stands for the
relative gain between 2D- and 1D-method (in %).

The optimal coefficient rates are quite low. For comparison, we
also calculated the rates provided by the “1D” usual approach (i.e.,
only the short-term cepstrum modeling is considered, and resulting
coefficients are transmitted every 20ms). For this 1D-method, we set
R;p to the 2D-method target value R, for fair comparison (this way,
both 1D- and 2D-method provide the same final percentage of
amplitudes correctly modeled according to the perceptual criterion).
As can been seen from Table 1, the 2D modeling method provides
quite large gains in coefficients rate compared to the 1D modeling
method. For female speech, gains ranging from 12.7% to 47.8% are
obtained, depending on the configuration. For male speech, the gains
are within 8.7%—42.0% (note that, as is usual in speech modeling, all
rates are higher for male speech than for female speech). Thus, the
2D-modeling strategy leads to significantly decrease the rates of
model coefficients (until about 50% for the lower constraints).
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3.3. Signal quality

Informal extensive listening tests reveal that, for values of R;p
about 0.75 (and correct setting of R;p), the synthesized signals are
of good quality, fairly close to the originals (see Fig. 2 for a visual
illustration), and very close to the signals synthesized from the
measured amplitude parameters, without any modeling. Also, they
were found to be very close to the signals synthesized from the 1D-
modeled parameters, with the same overall target ratio (i.e., R;p of
the 1D-method = R,p of the 2D-method), while the coefficient
rates are significantly lower for the 2D-method. If R,y is between
0.70 and 0.60, the quality is lowered, but remains quite fair. For
lower R;,p, say below 0.60, the trajectories of the DCM coefticients
tends to be “over-simplified” (since the order P gets lower), and so
are the trajectories of the envelope spectrum. Thus, the resulting
signal, although good-sounding, moves away from the original
signal, tending towards some “hypo-articulated” utterance.

To confirm the efficiency of the proposed method, two formal
listening tests were conducted, in a quiet environment, using a
high-quality PC soundcard and Sennheiser HD202 headphones.
Twelve sentences were used, from 6 speakers (3 male, 3 female, 2
sentences from each speaker). The settings were: R;p = 80% and
Ryp = 70% (hence R;p = 70% for the 1D-modeled signals). The
average gain in coefficient rate of the 2D- over the 1D-method was
30% for female voices and 26% for male voices (hence the
selected signals represent well the general results of Table 1). Ten
naive listeners with normal hearing were first asked to choose the
signal with the best perceived quality among the pairs of 1D/2D-
modeled signals, presented in random order (i.e. perform an AB
test). In the second test, the signal synthesized from the measured
amplitudes (without any modeling) was provided, and the listeners
were asked to point out which of the 1D/2D-modeled signal was
closer to this reference signal (i.e., perform an XAB test).

For the AB test, the overall preference score across sentences
and subjects is 70.8% for the 2D-method vs. 29.2% for the 1D-
method. Therefore, this test reveals a strong preference for the 2D-
model over the 1D-model. This is confirmed by the XAB test: a
score of 79.2% vs. 20.8% in favor of the 2D-modeled signals
shows that they are clearly judged more faithful to the reference
signals (note that a training effect may have occurred since the
XAB test has been done systematically after the AB test). Given
that the 2D- and 1D-modeled signals were generally found to be
very close in the informal tests, we were (positively) surprised by
the extent of the score unbalances. These results clearly validate
the 2D proposed model from a perceptual point of view.
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Figure 2: Top: original signal (same signal as the one used for
Fig. 1); Bottom: signal synthesized with the 2D-modeled

amplitudes (R,p=0.70 ; R;p=0.90, M =13, P=19, K =55).

4. Conclusion

This work has confirmed the robustness and generality of the DCM,
which is adequate for modeling both spectral envelopes (as shown
before in [2][3]) and time-trajectories of model parameters (as shown
before in [5][6][7]). Plugging these two aspects together in a 2D
cepstrum modeling scheme has led to further advances. Specifically,
in this study, the main reason for the efficiency of the 2D-modeling
is the intrinsic double variable-rate property: both spectral and time
model orders M and P are automatically adjusted to the local signal
characteristics. Such flexible 2D-approach can lead to significantly
reduce the number of model coefficients for spectral amplitudes
representation, while preserving a very good quality for the
synthesized signals, as revealed by listening tests. This opens new
doors to very-low bit-rate sinusoidal coding of speech/audio signals.

Future works will concern i) the adaptation of the method to
unvoiced/mixed V-UV speech sections, ii) quantization issues, and
iii) the use of the method in a sinusoidal speech coder at very low
bit-rate and with large delay tolerance. For such application, phase
information can be reduced to the fundamental frequency trajectory,
which can also be long-term modeled [6].
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