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ABSTRACT

A simple new method for estimating temporally stable power spectra
is introduced to provide a unified basis for computing an interference-
free spectrum, the fundamental frequency (F0), as well as aperiodic-
ity estimation. F0 adaptive spectral smoothing and cepstral liftering
based on consistent sampling theory are employed for interference-
free spectral estimation. A perturbation spectrum, calculated from
temporally stable power and interference-free spectra, provides the
basis for both F0 and aperiodicity estimation. The proposed ap-
proach eliminates ad-hoc parameter tuning and the heavy demand
on computational power, from which STRAIGHT has suffered in
the past.

Index Terms— periodic signal, power spectrum, consistent sam-
pling, periodicity, speech processing

1. INTRODUCTION

STRAIGHT [1], a speech analysis, modification, and synthesis sys-
tem (as well as speech morphing based on it) is widely used in the
speech research community [2, 3, 4, 5, 6]. STRAIGHT decom-
poses input speech into three types of positive valued parameters:
an interference-free spectrogram, an aperiodicity map, and a funda-
mental frequency (F0) trajectory. Despite the conceptual simplicity
of the parameters, the procedures for extracting them are compli-
cated. They consist of nonlinear transformations and many coef-
ficients for tuning performance, making theoretical analysis of the
system intractable. This paper proposes a complete reformulation of
STRAIGHT, based on a unified approach that uses a novel, simple
method for calculating a temporally stable power spectrum.

2. TEMPORALLY STABLE SPECTRUM

The temporally stable power spectrum of a periodic signal is calcu-
lated as the sum of two power spectra using a pair of time windows
temporally separated for half of the fundamental period [7]. Let
H(ω) represent the Fourier transform of a time-windowing func-
tion. Assume that the width of the main lobe of H(ω) only covers
two harmonic components of the fundamental period T0. There-
fore, it is sufficient to assume that the test signal δ(ω) + αejβδ(ω −
ω0) represents the general periodic signals with fundamental pe-
riod T0, where ω0 = 2π/T0. Since the Fourier transform of H(ω)
yields e−jωτH(ω) when the window is temporally displaced by the
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amount of τ , the power spectrum of test signal |S(ω, τ)|2 is given
by

|S(ω, τ)|2 = H2(ω) + α2H2(ω − ω0) (1)

+ 2αH(ω)H(ω − ω0) cos(ω0τ + β).

The third term consists of window location τ and represents the
temporal dependency of the power-spectrum estimation. The power
spectrum of the same signal analyzed by a time window located at
τ + T0/2 has a third term with an opposite sign because ω0T0/2 =
π. Therefore, |S(ω, τ)|2+|S(ω, τ +T0/2)|2 has no time-dependent
term (in this paper, the resultant spectrum is called ‘the ‘TANDEM
spectrum”).

Equation (1) suggests another trivial solution of the temporally
stable spectrum. When a time window is long enough for H(ω) and
H(ω − ω0) to have no overlap, the third term of Eq. (1) vanishes.
However, this trivial solution is not useful for speech analysis be-
cause a finer temporal resolution is necessary to track the dynamics
of speech sounds. The effective duration of the TANDEM window
can be made shorter than the fundamental period of the signal while
retaining temporal stability.

3. INTERFERENCE-FREE SPECTRUM

The periodic excitation of a set of resonators, such as the vocal tract,
by a pulse train is also a sampling operation of the correspond-
ing transfer function by a periodic pulse on the frequency axis. In
other words, it is an analog-to-digital (discrete) conversion on the
frequency axis. By this analogy, the problem becomes discrete-to-
analog conversion on the frequency axis.

Because this process consists of both analog-to-discrete and discrete-
to-analog conversions, and because the transfer function of the vocal
tracts is not band-limited, adopting a formulation of consistent sam-
pling [8] is a better approach. A brief summary and excerpts of the
main theorem [8, 9] are given below.

3.1. Consistent sampling (excerpts and summary)

Assume that a pre-filter, a sampler, a digital correcting filter, and a
post filter are connected in series. Let ϕ1(t) and ϕ2(t) represent
the impulse responses of the pre- and post filters, respectively. Then
define the cross-correlation sequence a12(k) as an inner product of
these functions:

a12(k) = 〈ϕ1(t − k), ϕ2(t)〉. (2)

39331-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



Theorem 2 [8, 9] Let f ∈ H be an unknown input function. Pro-
vided m > 0 exists such that |A12(e

jω)| ≥ m i.e., then there is

unique signal approximation f̃ in V (ϕ2) that is consistent with f in
the sense that

∀f ∈ H, c1(k) = 〈f, ϕ1(x − k)〉 = 〈f̃ , ϕ1(x − k)〉. (3)

This signal approximation is given by

f̃ = P̃ f(x) =
X
k∈Z

(c1 ∗ q)ϕ2(x − k), (4)

where q is the impulse response of the digital correcting filter and is
calculated by

Q(z) =
1P

k∈Z a12(k)z−k
(5)

and underlying operation P̃ is a projector from L2 into V (ϕ2).

3.2. Envelope estimation based on consistent sampling

This theorem is applied to interference-free spectral estimation us-
ing the following interpretation of the underlying model of the the-
orem. In this interpretation, a TANDEM spectrum is an output of
this model, where the sampler is a periodic pulse on the frequency
axis and the impulse response of the post-filter ϕ2(t) is |H(ω)|2 in
Eq. (1). Pre- and digital correction filters are missing in this case.
The problem to be solved is how to design the missing correction
filter and how to modify the post-filter to satisfy consistency.

A simple illustrative case of the TANDEM method is to use the
following Hanning window defined in [−T0, T0]:

h(t) = (1 + cos(πt/T0))/2. (6)

The TANDEM spectrum of a periodic pulse train with a period of T0

is also periodic on the frequency axis. This periodic fluctuation on
the frequency axis represents interference caused by signal period-
icity. This interference is completely eliminated by calculating the
convolution with the Harr function rω0(ω) when the width is set to
ω0.

The next step is to design the correction filter by introducing
this Harr function into the post-filter. Coefficients of the correction
filter qk are calculated using Eq. (5) with (|H(ω)|2 ∗ rω0(ω)) for
ϕ2(t) and a delta function for ϕ1(t) to calculate a cross-correlation
sequence a12(k). In this example, a12(k) consists of three non-zero
elements: 0.0468, 1, and 0.0468 for k = −1, 0, 1. Coefficients
qk = q−k for k = 0, 1, 2, and 3 are 1.0044, -0.0471, 0.0022, and
-0.0001, respectively, and vanish rapidly for larger k.

3.3. Practical implementation issues I

The convolution of TANDEM spectrum PT (ω) with rω0(ω) is cal-
culated from the difference of the integrated TANDEM spectrum at
two frequency points separated by ω0. It is useful to truncate qk

in order to leave three dominant elements (for k = −1, 0, 1) be-
cause the large dynamic range usually found in speech spectra tends
to introduce spectral smearing if qk has long tails. Let q̃k represent
the normalized and adjusted qk to compensate for the effect of this
truncation. The interference-free spectrum is assured to have no neg-
ative values when the correction filtering using q̃k is implemented in
the cepstral domain. Taking into account these considerations, an
interference-free spectrum, PTST (ω) (“STRAIGHT spectrum” be-
low), is calculated from the TANDEM spectrum PT (ω) using the

following set of equations:

C(ω) =

Z ω

ωL

PT (λ)dλ (7)

LS(ω) = ln [C(ω + ω0/2) − C(ω − ω0/2)] (8)

PTST (ω) = e[q̄1(LS(ω−ω0)+LS(ω+ω0))+q̄0LS(ω)]. (9)

3.4. Synthesis procedure and pre-filter

The pre-filter of the underlying model of consistent sampling corre-
sponds to spectral smearing effects that are dependent on the spe-
cific implementation of the synthesis procedure. For example, when
a window-based method for calculating the FIR response of given
spectra is employed, the pre-filter corresponds to the power spectrum
of the windowing function. When a sinusoidal model is employed
and F0 is constant, the pre-filter yields a delta function.

4. FUNDAMENTAL FREQUENCY ESTIMATION

The design objective of an F0 extractor for speech analysis and syn-
thesis is to extract an F0 trajectory that is identical to the F0 trajec-
tory generated by a re-synthesized version of the original signal. The
fundamental period of the speech signal is updated at every glottal
cycle. It is necessary for the F0 extractor to follow this cycle-by-
cycle F0 change. To satisfy this condition, the F0 extractor has to
operate pitch-synchronously or pitch-adaptively with temporal reso-
lution comparable to that of the fundamental period. Both TANDEM
and STRAIGHT spectra simultaneously satisfy a finer temporal res-
olution requirement and essentially yield pitch synchronous analysis
without the need for precision in window positioning.

Assume that the F0 of a signal is temporally constant and known.
Then define the fluctuation spectrum PC(ω) using

PC(ω) =
PT (ω)

PTST (ω)
− 1. (10)

When the signal is a periodic pulse train and the analysis window
for the TANDEM method is a Hanning window defined by Eq. (6),
PC(ω) yields a simple sinusoid cos(2πω/ω0)/4. The Fourier trans-
form of PC(ω) has a unique peak at T0 on the lag axis. Neither half
nor double pitch peaks occur.

For more complex spectral shapes, this relation still holds be-
cause the STRAIGHT spectrum closely approximates the spectral
envelope. The sinusoidal modulation of the frequency axis reflect-
ing signal periodicity is completely suppressed in the STRAIGHT
spectrum. Therefore, PC(ω) consists only of the effect of signal
periodicity.

4.1. Practical implementation issues II

When analyzing actual speech, F0 is not constant in time and is not
known in advance. F0 changes over time introduce amplitude mod-
ulation of PC(ω) on the frequency axis. This amplitude modulation
is approximately modeled by 1 + cos(cmω). Modulation (spatial)
frequency cm is proportional to the speed of the F0 change. This
modulation introduces spurious peaks in the Fourier transform of
PC(ω).

This artifact can be removed using the lower frequency portion
of PC(ω) with frequency weighting wω0,N (ω) defined in [−Nω0, Nω0].
N is set to satisfy π/Nω > cm. A practical implementation of
wω0,N (ω) is

wω0,N (ω) = c0 (1 + cos (πω/Nω0)) , (11)
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where c0 is a constant so that
R ∞
−∞ wω0,N (ω)dω = 1.

Considering these factors, a weighted Fourier transform of the
fluctuation spectrum is defined as

A(τ ; T0) =

Z ∞

−∞
wω0,N (ω)PC(ω; T0)e

−jωτdω, (12)

where the assumed fundamental period T0 is explicitly delineated.
Note that A(τ ; T0) retains peak uniqueness.

Since no a priori information about the F0 is available, it is nec-
essary to provide F0 candidates and to define a function to evaluate
their possiblities. A weighting function wLAG(τ ; T0), used to se-
lect the best response of each periodicity detector, is introduced to
integrate each A(τ ; T0) to yield a F0 periodicity score Ā(τ):

Ā(τ) = C0

MX
k=1

wLAG(τ ; TL2
1−k

L )A
“
τ ; TL2

1−k
L

”
, (13)

where L represents the number of frequency bands in one octave.
A constant TL is the longest limit of the fundamental period, and
M represents the total number of frequency bands. A coefficient
C0 is introduced to give the periodicity score a value of 1 when a
purely periodic signal is analyzed. A preliminary test with TL =
32(ms) suggested that L = 2 and M = 9 using frequency weighting
wω0,N (ω) with N = 4 provides for reasonable F0 coverage and
precision. A raised cosine centered at T0 was used for wLAG(τ ; T0).

5. APERIODICITY ESTIMATION

Speech sounds are not strictly periodic. F0 and amplitude fluctua-
tions introduce FM and AM on each harmonic component. In addi-
tion, the excitation source signal fluctuates cycle by cycle, and the
vocal-tract transfer function varies due to the movement of the artic-
ulators. These factors introduce deviations from the precise repeti-
tion of the waveform of each cycle.

To define aperiodicity properly, these factors must be separated
into two groups. The first consists of factors dependent on F0 and
the STRAIGHT spectrum. Effects caused by these factors have to be
removed prior to the aperiodicity analysis in order to prevent double
counting, as both the F0 and the STRAIGHT spectrum are used in
synthesizing the speech signals. It is also reasonable to assume that
F0 and the STRAIGHT spectrum are already available before aperi-
odicity analysis.

As a first-order approximation, assume that the effects of fac-
tors in the second group are random. Let σ2

P and σ2
N represent the

power of the periodic and aperiodic (random) components, respec-
tively. Let σ2

P.obs represent the power of the periodic component in
the observed fluctuation spectrum PC(ω; T0). The power of the pe-
riodic component yields σ2

P (window) when the signal is purely peri-

odic. The value of σ2

P (window) depends on the windowing function

used for the TANDEM method. For example, σ2

P (Hanning) is 1/16,

as found in the discussion pertaining to Eq. (10). The following
equation defines aperiodicity implicitly using σ2

P and σ2
N :

σ2
P

σ2
P + σ2

N

=
σ2

P.obs

σ2

P (window)

. (14)

5.1. Practical implementation issues III

Converting the time axis t to τ(t) using the instantaneous frequency
of the fundamental component f0(t) and target F0 ffix in Equation

Fig. 1. TANDEM (light thin line) and STRAIGHT spectra (dark
thick line) of the Japanese vowel /e/.

τ(t) =
R t

0
ffix/f0(λ)dλ, the F0 of the signal converted onto the

new time axis has a constant value ffix [10, 11].

Because this transformation giving the input signals a constant
F0 eliminates the amplitude modulation of PC(ω) on the frequency
axis, the transformation also eliminates the size limit N of frequency
weighting in Eq. (11). Since F0 is already known, the only interest-
ing component of A(τ ; T0) is at τ = T0. Component A(τ ; T0)|τ=T0

is calculated using a quadrature signal hN (ω) defined without relo-
cation:

hN (ω) = wω0,N (ω) exp (2πjω/ω0) . (15)

Aperiodicity is frequency-dependent. It is necessary to represent
σ2

P and σ2
N as a function of ω. Since they are calculated from the

power of the periodic component σ2
P.obs in the fluctuation spectrum

PC(ω; T0), they can be estimated by calculating the convolution of
hN (ω) and PC(ω; T0). Let σ̃2

P.obs represent observed σ2
P.obs. It

follows that

σ̃2
P.obs(ω) =

˛̨
˛̨Z ∞

−∞
hN (λ)PC(ω − λ; T0)dλ

˛̨
˛̨2 (16)

= σ2
P.obs(ω) + εwN σ̃2

N (ω),

where εwN represents a coefficient of a leaky, random component,
since the component selectivity of hN (ω) is not generally sharp. A
preliminary test suggested that N = 8 provides a reasonable com-
promise between frequency selectivity and statistical fluctuation due
to the degrees of freedom.

6. EXAMPLES

Since preliminary tests using simulated signals revealed that the pro-
posed method performs as predicted, only the analysis for a natural
speech example is presented. The Japanese vowel sequence /aiueo/
spoken by a male speaker sampled at 22050 Hz was used. Refer to
the figure captions for discussion. Note that the STRAIGHT spec-
trum of this sample was calculated at 690 ms using Matlab on a
Macinstosh Intel Core Duo 2.16 GHz computer (OS X) This calcu-
lation speed is faster than real time.
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Fig. 2. F0 extraction. Upper plot shows F0 candidates. Five can-
didates are plotted for each frame. Thick open circles represent the
best candidate for each frame. The bottom plot shows periodicity
score Ā(τ) of each candidate defined by Eq. 13. Only 1% of candi-
dates due to random fluctuation a have higher periodicity score that
exceeds the dashed line in the plot.

7. CONCLUSION

A unified framework was introduced based on a simple and novel
power-spectrum estimation method called TANDEM, which elimi-
nates periodic temporal fluctuations. Based on this representation,
extraction algorithms for interference-free spectrum (STRAIGHT
spectrum), F0, and aperiodicity maps are formulated in a theoreti-
cally tractable manner. Preliminary tests indicated that the analysis
results are compatible with the current version of STRAIGHT and
yield re-synthesized speech that is indistinguishable from the current
version. Optimization and evaluation of the TANDEM-STRAIGHT
approach are planned in the near future.
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