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ABSTRACT
In this paper, we describe a novel statistical approach to the vocal
tract transfer function (VTTF) estimation of a speech signal based on
a factor analyzed trajectory hidden Markov model (HMM). Because
speech is a quasi-periodic signal, there are many missing frequency
components between adjacent F0 harmonics. The proposed method
determines a time-varying VTTF sequence based on the maximum a
posteriori (MAP) estimation considering not only harmonic compo-
nents observed at each analyzed frame but also those at other frames
for stochastically interpolating the missing frequency parts.

Index Terms— speech analysis, vocal tract transfer function,
factor analysis, trajectory HMM, MAP

1. INTRODUCTION
The estimation of the vocal tract transfer function (VTTF) for a
speech signal is an essential problem in speech processing. Be-
cause the speech signal results from a convolution of the VTTF and
a quasi-periodic excitation signal, an observed spectrum at a voiced
frame consists of line-spectra on which only harmonic components
at frequencies corresponding to integral multiples of an F0 are basi-
cally helpful for estimating the VTTF. Therefore, many missing fre-
quency components between adjacent harmonic components make it
indeed hard to extract the accurate VTTF.

Many sophisticated frame-by-frame spectral analysis methods
have been studied. Itakura and Saito [1] proposed maximum like-
lihood estimation of a speech spectral envelope. This method de-
termines the all-pole spectral envelope minimizing the Itakura-Saito
distance that evaluates a matching error sensitively around peaks of
spectral densities, i.e., around harmonic components. Tokuda et al.
[2] extended this analysis method to mel-generalized cepstral anal-
ysis for treating various spectral representations including all-pole
and cepstrum on a warped frequency scale in a unified framework.
In these methods, it is necessary to adjust an analysis order to keep
the estimated VTTF from capturing periodic components of the ex-
citation signal. To alleviate this problem, Kawahara et al. [3] pro-
posed STRAIGHT analysis that explicitly uses F0 information for
removing the periodic components from the estimated VTTF. These
conventional spectral analysis methods basically interpolate miss-
ing frequency components considering neighboring harmonic com-
ponents based on a parametric spectral envelope modeling process
or an F0 adaptive smoothing process on a time-frequency region.

Several offline spectral analysis methods for statistically extract-
ing the averaged VTTF from multiple frames have also been stud-
ied particularly in the area of speech synthesis. This framework as-
sumes that additional information such as phoneme transcriptions is
basically available for selecting frames at which the VTTFs are pre-
sumed similar to each other. Akamine and Kagoshima [4] proposed
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closed loop training (CLT) for extracting a VTTF sequence for each
diphone unit so that an error between natural and re-synthesized di-
phone waveforms is minimized. Shiga and King [5] proposed the
VTTF determination based on the minimization of an error of har-
monic components for multiple acoustic frames at which simulta-
neously recorded articulatory parameters are similar to each other.
These methods basically estimate missing frequency components
from harmonic components observed at other frames for determin-
ing the common VTTF for those frames.

In this paper, we describe a novel statistical approach to the of-
fline VTTF estimation based on the maximum a posteriori (MAP)
estimation. To model harmonic components observed over an utter-
ance, we propose a factor analyzed trajectory hidden Markov model
(HMM). It enables the estimation of a time-varying VTTF sequence
considering not only harmonic components at each analyzed frame
but also those at other frames to interpolate the missing frequency
components in a probabilistic manner. We conduct a simulation ex-
periment for demonstrating the effectiveness of the proposed method.

2. BASIC IDEA OF PROPOSED VTTF ESTIMATION

Purpose of the VTTF analysis is to extract a spectral parameter se-
quence c capturing time-varying VTTFs from a speech signal,
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h
c�
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2 , · · · , c�
t , · · · , c�

T

i�
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where ct is a D-dimensional spectral parameter vector at frame t.
In this paper, we employ mel-cepstrum, which is one of effective
spectral parameters having a good property to model speech signals.
A sequence of observed harmonic components s is shown as
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where at frame t the number of harmonics is Ht and the frequency

of the hth harmonic component is f
(h)
t . The total number of dimen-

sions of s is H (=
PT

t=1 Ht).
A basic idea of the proposed approach is to estimate the spectral

parameter sequence that maximizes its posterior probability density
given the observed harmonic components as follows:

ĉ = argmax
c

P (c|s, λ) = argmax
c

P (s|c, λ)P (c|λ) (4)

where λ is a parameter set of a context-dependent model trained us-
ing harmonic components at multiple other frames at which VTTFs
seem similar to each other. Fig. 1 shows an example of the estimated
VTTFs. If estimating the VTTF from only the harmonic components
observed at an analyzed frame in a manner such as the conventional
frame-by-frame analysis methods, which is approximately related to
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Fig. 1. An example of estimated VTTFs.

the maximization process of P (st|ct, λ), it is essentially difficult
to estimate spectral peaks between adjacent harmonic components.
It is observed from the averaged VTTF for harmonic components
at multiple frames, which is determined based on P (ct|λ) trained
by one of the conventional offline analysis methods, that those com-
ponents are very helpful for estimating such missing peaks. In the
MAP estimation (i.e., based on P (ct|st, λ)), the VTTF is deter-
mined from harmonic components observed at the analyzed frame
(i.e., based on P (st|ct, λ)) while missing frequency components
are stochastically interpolated from those at multiple frames (i.e.,
based on P (ct|λ)). We can see that the MAP estimation determines
the VTTF having peaks between adjacent F0 harmonics (even a peak
at lower frequency than an F0) as shown in the area surrounded by
an ellipse.

3. MODELING OF HARMONIC COMPONENT
SEQUENCE BY FACTOR ANALYZED TRAJECTORY HMM

In order to realize the proposed estimation process, we need to define
the probability densities P (s|c, λ) and P (c|λ). Note that only the
harmonic component sequence s is observed and the mel-cepstral
sequence c should be considered as a hidden variable. This frame-
work is described by factor analysis. We assume that the harmonic
component vector st at frame t is modeled as follows:

st = Btct + nt (5)

where Bt is a time-varying factor loading matrix, which is specif-
ically an Ht-by-D DFT matrix to convert mel-cepstral coefficients
into log-scaled power spectra at individual harmonic frequencies vary-
ing according to an F0. The noise vector nt is distributed according
to a Gaussian probability density with zero mean and a diagonal co-
variance matrix diag[vt] whose diagonal elements are given by

vt =
h
vt(f

(1)
t ), vt(f
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The hidden variable, i.e., mel-cepstrum, is modeled in a state space.
It is well known that dynamic characteristics of mel-cepstrum vary
according to phonemic environments. The trajectory HMM [6] has
a good property to model such a parameter sequence. By combining
these two powerful techniques, we propose a factor analyzed tra-
jectory HMM that effectively models the probability density of the
harmonic component sequence P (s|λ). In this model, the spectral
extraction process and the spectral modeling process are simultane-
ously optimized for the given observed harmonic components. This
framework is similar to the structured speech modeling [7] in terms
of using a state space model for modeling an observation sequence.

3.1. Factor Analyzed Trajectory HMM

Definition of P (c|q, λ): Let a spectral feature vector sequence be

o =
ˆ
o�
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includes not only static but also dynamic features. In the conven-
tional HMM, the probability density of o given an HMM state se-
quence q = [q1, q2, · · · , qt, · · · , qT ] is written as

P (o|q, λ) = N (o; μq , Uq) =

TY
t=1

N (ot; μqt
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where N (·; μ, U ) denotes the Gaussian distribution with a mean
vector μ and a covariance matrix U , and
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By imposing an explicit relationship between static and dynamic fea-
tures, which is given by o = Wc where W is a conversion matrix
to append dynamic features, the conventional HMM is reformed as
the trajectory HMM [6]. For given q, the probability density of c in
the trajectory HMM is written as

P (c|q, λ) = N (c; cq, P q) =
1

Zq
P (o|q, λ) (10)

where
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Note that in the trajectory HMM the mean vector cq varies within
states and inter-frame correlation is modeled by the temporal covari-
ance matrix P q that is generally full even if using the same number
of model parameters as in the conventional HMM.
Definition of P (s|c, q, λ): The conditional probability density of s
given c and q is modeled as follows:

P (s|c, q, λ) = N (s; Bc, V q) =
TY

t=1

N (st; Btct, diag [vqt ]) (15)

where
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Note that the dimension of st varies frame by frame.
Definition of P (s|λ): For given q, the probability density of s is
written as

P (s|q, λ) =

Z
P (s|c, q, λ)P (c|q, λ)dc = N (s; sq, Oq) (19)

where

sq = Bcq (20)

Oq = V q + BP qB�. (21)
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The intra/inter-frame correlation between any harmonic component
pair over an utterance is modeled by the covariance matrix Oq that
is generally full even if using diagonal covariance matrices in Eq.
(9). Consequently, the likelihood function of the factor analyzed
trajectory HMM for a harmonic component sequence is given by

P (s|λ) =
X
all q

P (q|λ)P (s|q, λ). (22)

To reduce the computation complexity, we approximate the like-
lihood function using a single HMM state sequence as follows:

P (s|λ) � P (q|λ)P (s|q, λ). (23)

In this paper, the state sequence q is determined with Viterbi al-
gorithm so that the likelihood P (o, q|λ) is maximized for a mel-
cepstrum sequence extracted by a conventional analysis method.

3.2. Estimation of Model Parameters

Model parameters λ of the factor analyzed trajectory HMM are es-
timated so that the likelihood is maximized as follows:

λ̂ = argmax
λ

P (s|q, λ), (24)

where λ consists of
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Note that the transition probabilities are not updated because the
state sequence q is fixed as mentioned above. The other parame-
ters are estimated with EM algorithm.
Auxiliary function: The auxiliary function is written as

Q(λ, λ̂) =

Z
P (c|s, q, λ) log P (s, c|q, λ̂)dc. (28)

The posterior probability density function P (c|s, q, λ) in the RHS
of Eq. (28) is given by
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The log-scaled joint probability density function log P (s, c|q, λ) in
the RHS of Eq. (28) is given by

log P (s, c|q, λ) =
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In these Eqs., parameter sequences over an utterance are given by

μq = Aqm (37)
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where Aq and A
(σ)
q are a state assignment matrix and a state and

frequency-bin assignment matrix, respectively.
E-step: The following statistics are calculated,Z
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M-step: Updated noise variance vectors σ̂ are written as
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where on-diag[·] uses only diagonal elements of a square matrix.
Updated mean vectors m̂ are written as
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Covariance matrices Σ are updated using the following gradient,
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where

ĉq = P qW �U−1
q μ̂q. (45)

It is straightforward to extend this training algorithm to the multiple
observation sequences.

3.3. MAP Estimation of Spectral Parameter Sequence

Based on the trained factor analyzed trajectory HMMs, a spectral pa-
rameter sequence is determined by maximizing the posterior prob-
ability density function P (c|s, q, λ) given by Eq. (29) as follows:

ĉ = argmax
c

P (c|s, q, λ) = c′
q. (46)

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

We conducted a simulation experiment based on the VTTF estima-
tion for re-synthesized speech samples. First, we analyzed natural
speech samples using STRAIGHT analysis method. And then, we
re-synthesized speech waveforms from the extracted spectra and var-
ied F0s using STRAIGHT synthesis. A manipulation ratio of F0 was
set to 2−1, 2−0.5, 1, 20.5, 2, and 21.5 (e.g., re-synthesized F0s were
twice as large as the original F0s when the manipulation ratio was
set to 2). We employed the STRAIGHT mixed excitation and a full
representation of the extracted STRAIGHT spectra with no compres-
sion to re-synthesize speech as accurately as possible. We used 50
phonetically balanced sentences uttered by a Japanese male speaker
(MHT). Sampling frequency was 16 kHz.
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Fig. 2. Mel-cepstral distortion as a function of manipulation F0 ratio.

We evaluated the VTTF estimation accuracy of mel-cepstral anal-
ysis [2], STRAIGHT analysis [3], and the proposed analysis by com-
paring the VTTFs estimated from the re-synthesized speech samples
with true VTTFs, i.e., the spectra extracted from natural speech sam-
ples, which were used in re-synthesis. Frame shift was set to 5 ms.

Mel-cepstral distortion with the first through 24th mel-cepstral coef-
ficients was employed as an objective measure. In mel-cepstral anal-

ysis, the analysis order was set to 24, i.e., the 0th through 24th mel-
cepstral coefficients were determined. The proposed method also
used those coefficients as a spectral parameter to model the VTTF.

In the proposed method, we employed the continuous HMM (5
state left-to-right with no skips) of which each state output proba-
bility density was modeled by a single Gaussian distribution with a
diagonal covariance matrix. In order to determine the initial parame-
ters of the factor analyzed trajectory HMMs, we first trained the ini-
tial monophone HMMs using mel-cepstra obtained by STRAIGHT
analysis. And then, we constructed tied-state triphone HMMs us-
ing a decision-tree based context clustering technique adopting the
minimum description length (MDL) criterion [8]. The total num-
ber of resulting HMM states was 149 (i.e., N = 149 in Eqs. (25)
and (26)). Using the resulting HMMs, the HMM state sequence was
determined for each utterance with Viterbi algorithm. As for the
noise variance, we employed a single variance vector tied over all
HMM states (i.e., Ns = 1 in Eq. (27)). The initial noise variance
values were determined based on errors between harmonic compo-
nents represented by the STRAIGHT mel-cepstra and the observed
harmonic components. After these initialization processes, we iter-
atively updated parameters of the factor analyzed trajectory HMMs.
In order to alleviate F0 interference in observing harmonic compo-
nents, the pitch synchronous analysis method [3] in STRAIGHT was
employed. Based on the trained factor analyzed trajectory HMMs,
a mel-cepstral sequence to model the time-varying VTTFs for each
utterance was determined with the MAP estimation.

4.2. Experimental results
Fig. 2 shows mel-cepstral distortion between the estimated VTTF
and the true VTTF as a function of the manipulation F0 ratio. An
example of the estimated VTTF sequences is shown in Fig. 3. The
estimation accuracy rapidly degrades as F0s relatively increase be-
cause the number of observed harmonic components decreases. The
estimation accuracy of mel-cepstral analysis is worse than the others
because the estimated VTTF captures F0 harmonic components (see
around 0.3 [s] in Fig. 3). STRAIGHT realizes more robust VTTF
estimation by using F0 information to remove its influence. How-
ever, it is essentially difficult to estimate peaks of the VTTF between

Fig. 3. An example of VTTF sequences extracted using a) mel-
cepstral analysis, b) STRAIGHT analysis, and c) proposed analysis.
The true VTTF sequence is shown as d). Manipulation F0 ratio is set

to two. Every VTTF is liftered by the 24th mel-cepstral coefficients.

F0 harmonics. The best VTTF estimation accuracy is attained by the
proposed method. As shown in Fig. 3, the proposed method makes
it possible to estimate the VTTF sequence exhibiting similar spectral
structures and their dynamic characteristics to the true ones.

5. CONCLUSIONS
We proposed a statistical method for estimating the vocal tract trans-
fer function (VTTF) from a speech signal. The proposed method
realized the maximum a posteriori estimation of the VTTF sequence
based on a factor analyzed trajectory hidden Markov model to effec-
tively model harmonic components observed over an utterance. An
experimental result showed that the proposed method is very effec-
tive particularly when an F0 of the analyzed speech is high. It is
worthwhile to evaluate the effectiveness of the proposed framework
as a training algorithm in the HMM-based speech synthesis system.
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speech representations using a pitch-adaptive time-frequency smooth-
ing and an instantaneous-frequency-based F0 extraction: possible role
of a repetitive structure in sounds. Speech Communication, Vol. 27, No.
3–4, pp. 187–207, 1999.

[4] M. Akamine and T. Kagoshima. Analytic generation of synthesis units
by closed loop training for totally speaker driven text to speech system
(TOS Drive TTS). Proc. ICSLP, pp. 1927–1930, Sydney, Australia,
Dec. 1998.

[5] Y. Shiga and S. King. Estimating the spectral envelope of voiced speech
using multi-frame analysis. Proc. EUROSPEECH, pp. 1737–1740,
Geneva, Switzerland, Sep. 2003.

[6] H. Zen, K. Tokuda, and T. Kitamura. Reformulating the HMM as a
trajetory model by imposing explicit relationships between static and
dynamic feature vector sequences. Computer Speech and Language,
Vol. 21, pp. 153-173, 2007.

[7] L. Deng, D. Yu, and A. Acero. Structured speech modeling. IEEE
Trans. Audio, Speech and Language Processing, Vol. 14, No. 5, pp.
1492–1504, 2006.

[8] K. Shinoda and T. Watanabe. MDL-based context-dependent subword
modeling for speech recognition. J. Acoust. Soc. Jpn. (E), vol. 21, no.
2, pp. 79–86, 2000.

3928


