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ABSTRACT

In this paper, we examine the problem of overcomplete representa-
tions and provide new insights into the problem of stable recovery of
sparse solutions in noisy environments. We establish an important
connection between the inverse problem that arises in overcomplete
representations and wireless communication models in network in-
formation theory. We show that the stable recovery of a sparse
solution with a single measurement vector (SMV) can be viewed
as decoding competing users simultaneously transmitting messages
through a Multiple Access Channel (MAC) at the same rate. With
multiple measurement vectors (MMV), we relate the inverse prob-
lem to the wireless communication scenario with a Multiple-Input
Multiple-Output (MIMO) channel. In each case, based on the con-
nection established between the two domains, we leverage channel
capacity results with outage analysis to shed light on the fundamen-
tal limits of any algorithm to stably recover sparse solutions in the
presence of noise. Our results explicitly indicate the conditions on
the key model parameters, e.g. degree of overcompleteness, degree
of sparsity, and the signal-to-noise ratio, to guarantee the existence
of asymptotically stable reconstruction of the sparse source.

Index Terms— Overcomplete representations, inverse problems,
sparsity, multiple access channel, channel capacity.

1. INTRODUCTION

The problem of overcomplete representations and the computation
of a sparse solution to the associated underdetermined inverse prob-
lem arises in many application domains, such as biomagnetic inverse
problems, image restoration, bandlimited extrapolation and spectral
estimation, channel equalization, sensor networks [1, 2], etc. The
underlying sparse recovery problem is to represent a signal of inter-
est by using the minimum number of vectors from the overcomplete
dictionary. Although the original problem is NP-hard, several meth-
ods have been proposed to recover the sparse solution. In the noise-
less case [3] it is shown that the sparse solution can be efficiently re-
covered via convex relaxation, and the method has also proven to be
effective in noisy settings [4]. Greedy forward sequential selection
methods have also shown to be effective in solving the same problem
[5]. In addition, the presence of multiple measurements have shown
to greatly improve the ability to recover the sparse solution [1, 6].

Amid the encouraging discoveries, some recent research effort
has been focused on understanding the fundamental limitations as-
sociated with the stable recovery of sparse solutions. An important
question, and the subject of this paper, is the fundamental limits on
the ability of any algorithm to stably recover sparse solutions in the
presence of noise. Among recent attempts, information-theoretic
tools have begun to be employed to explore insights into this prob-
lem. For instance, by modeling the inverse problem as a measure-
ment channel, [2] combines channel capacity and rate-distortion the-
ory to reach design constraints. In [7], the authors derive perfor-
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mance bounds based on an analysis of the error probabilities of opti-
mal decoding schemes. [8] shows how fast decoding error probabil-
ity decays with model parameters for signals from binary constella-
tion.

In this work, we show that computing the sparse solution to
the inverse problem arising in overcomplete representations in the
presence of measurement noise can be modeled as the problem of
decoding competing users simultaneously transmitting information
through a multiple access channel (MAC). This connection is then
used to shed insight into the stable recovery problem, in particu-
lar the dependence of the successful decoding of one activation site
(non-zero entry) not only on the noise level but also on the behav-
ior of all other active sites. In addition, when multiple measurement
vectors (MMV) are available we show that the problem can be mod-
eled as decoding information transmitted through a MIMO channel.
The capacity results from the MIMO literature shed insight into the
improved performance enabled by MMV. In both cases, we utilize
channel capacity results with outage analysis to expose fundamental
limits on the asymptotically stable recovery of sparse solutions.

2. PRELIMINARY BACKGROUND

2.1. Inverse problem with sparsity requirement

We consider the signal model with measurement noise as following,

B = AX + W (1)

where A ∈ RM×N with M ≤ N , and, usually, M � N . A is

often referred to as the overcomplete dictionary. X ∈ RN×L, is the
source signal to be recovered. We can partition X into columns, i.e.

X = [x1, ...,xL], representing L vectors. W ∈ RM×L, is mea-
surement noise corrupting the measurements, and it can be also par-
titioned as W = [w1, ...,wL]. In this work, each element of W is

assumed to be i.i.d. Gaussian, i.e. N(0, σ2
n). B ∈ RM×L, and B =

[b1, ...,bL] are the L measurement vectors or signals to be repre-

sented. To simplify notation, define integer set NQ � {1, 2, ..., Q}.
Model (1) can be recognized as an inverse problem either with

single measurement vector (SMV) when L = 1, or with multiple
measurement vectors (MMV) when L > 1. In this paper, we will
consider both scenarios and make the following distinct and impor-
tant assumptions about the desired solutions [1].

(i) The solution vectors xl, l ∈ NL, are sparse, i.e. most of the
entries are zero. This requirement is the same for SMV and MMV.

(ii) The solution vectors xl, l ∈ NL, are required to have the
same sparsity profile so that the indices of the non-zero entries are
independent of l. This requirement reflects the consistency of the
underlying sources’ activities, and provides informative coupling be-
tween the vectors.

We denote the number of non-zero rows in X by K, which for
SMV will reduce to the number of non-zero entries in the column
vector. Note that K � N in the sparse source recovery problem.
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2.2. Information channels

Fig. 1. Information channels.

We introduce several important information channels that will
be employed in this work. Fig.1-(a) depicts a typical fading Gaus-
sian channel, where a is the channel input, h is the fading channel
gain, and b is the channel output corrupted by white Gaussian noise
n. In Fig.1-(b), Kc users, ai, with corresponding fading channel
gains hi, i ∈ NKc , access a Gaussian channel simultaneously with
only one receiver observing the noisy channel output b, forming a
fading multiple access channel (MAC). Fig.1-(c) illustrates a fad-
ing multiple-input multiple-output (MIMO) channel, where Lc re-
ceivers, bi, i ∈ NLc , are added into channel (b) with information
paths linking all transmitter-receiver pairs. hj,i denotes the fading
channel gain between user i and receiver j. The shaded box empha-
sizes the cooperation among all receivers.

For each channel, user j, j ∈ NKc , will have access to a code-

book C(j) = {c(j)
1 , ...c

(j)

N
(j)
c

}, where c
(j)
i , i ∈ N

N
(j)
c

, are codewords

of length Mc. The Rate Rj of user j’s codebook is defined as

Rj = (log N (j)
c )/Mc (2)

To transmit information, a user will select a codeword from its
codebook and transmit it through the channel making Mc uses of the
channel. Channel capacity C determines the supremum of amount
of information that can be conveyed through the channel with dimin-
ishing error probability of decoding.

3. MAC VS. SPARSE RECOVERY PROBLEM WITH SMV

3.1. K = 1: Only one non-zero entry in X

We motivate the connection between MAC and inverse problem with
SMV, i.e. L = 1, by first studying the simplest case where only one
non-zero entry exists in the source vector X .

We first rewrite Eq. (1) for L = 1 as following,

b1 = [a1, a2, . . . , aN ] [x1, x2, . . . , xN ]ᵀ + w1 (3)

where aj , j ∈ NN , are column vectors of A. Without loss of gen-
erality, suppose the non-zero entry is at index i. By peeling off
columns due to the zero entries in X , the effective form of Eq. (3) is

b1 = xiai + w1 (4)

Clearly, the only column which survives the matrix multiplica-
tion in (3) is ai, and it is scaled by xi and later contaminated by
noise w1. Eq. (4) is to be contrasted with the scalar fading Gaussian
channel which is mathematically described as

b = ha + n (5)

where n ∼ N(0, σ2
n), and pictorially depicted in Fig.1-(a).

To bridge model (4) and (5), we now discuss the key connections
between the two domains.

1. ai as codeword. We can treat the overcomplete dictionary
A as a codebook with each column vector aj , j ∈ NN , as a code-
word. Each element of ai is fed one by one to the channel (5) as
input a, resulting in M uses of the channel. Also, ai can be viewed

as stacking M transmissions of channel input a. Noise w1 and ob-
servation b1 can be related to channel noise n and channel output b,
respectively, in the same fashion.

2. Randomness in index i. For the inverse problem, we assume
that the index i of the non-zero entry can take any value equal-likely
over the integer set NN . This, in the communication context, is akin
to the user selecting randomly a codeword from the codebook C of
size N , with each codeword of length M , for transmission.

3. xi as fading channel gain. We model the value taken by
the source, xi, as a random quantity. The fading channel gain h
plays the same role as the random source xi. It’s realized once and
then kept fixed during the entire channel use. Essentially, we can
interpret the vector representation of (4) as M consecutive uses of
the underlying slow fading Gaussian channel (5) with appropriate
stacking of the inputs/outputs into vectors.

4. Similarity of objectives. To complete the analogy, we exam-
ine the goals in the two domains. For the sparse recovery problem,
we aim at identifying the non-zero index i and estimating the value
xi. In the communication context, the goal is successful decoding.

To make the problem simpler without significant loss in insight1 and
to make the connection exact, we assume that the gain of the non-
zero entries are known similar to the knowledge of channel gain in
communications. The important issue of identifying the location
of the non-zero entry then becomes the main focus. Based on the
above-mentioned connections, the stable recovery problem is tanta-
mount to identifying the correct codeword, i.e. successful decoding,
in the communication context.

In summary, the problem of computing a sparse solution to the
inverse problem can be interpreted as a channel decoding problem.
Consequently, results from channel coding theory can be used to
shed light on the sparse recovery problem. In particular, channel
capacity results can help shed light on the fundamental limits on the
stable recovery problem in the presence of noise. More explicitly,
we are now concerned with the stable recovery of a sparse solution
with one non-zero entry in the presence of noise, i.e. the recovery of
the location (index) of the non-zero entry.

To proceed, we assume input power constraint var(a) ≤ σ2
a.

The instantaneous channel capacity of (5) is given by [9],

C(h) = 0.5 log
[
1 + (σ2

a/σ2
n)h2]

(6)

and (6) can be achieved when the channel input is Gaussian, i.e. a ∼
N(0, σ2

a). Correspondingly, to achieve best performance, elements

of A should be independently generated according to N(0, σ2
a).

According to (2), the rate RA of codebook A is defined as

RA = (log N)/M (7)

Based on channel coding theorem [9], to guarantee successful
transmission, it’s required that

RA < C(h) (8)

Substitute (6) and (7) into (8) immediately yields the condition
for any decoding scheme to theoretically succeed,

(log N)/M < 0.5 log
[
1 + h2SNR

]
(9)

where SNR � σ2
a/σ2

n. Correspondingly, (9) can be also viewed as
the condition for any possible sparsity recovery method to succeed.
To proceed, we introduce outage probability to account for the ran-
dom nature of the channel gain h (which in turn is the sparse source
xi). An outage event is defined as the realization of channel gain
h fails to support the target rate, i.e. RA > C(h). It will defi-
nitely lead to decoding failure, which equivalently means we cannot
recover the sparse solution. In practice, we need to set a threshold
for the probability that an outage event occurs, in order to evaluate

1Once the positions are accurately determined the exact value of xi can
be readily computed using a least squares approach.
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the performance of a system. Suppose we upper-bound the outage
probability by ε, which translates into

P
(
0.5 log

[
1 + h2SNR

]
< (log N)/M

) ≤ ε (10)

To solve for an explicit relation between key parameters, we as-

sume h ∼ N(0, σ2
h), which in turns implies xi ∼ N(0, σ2

h). It can
be shown that the following inequality must hold for (10) to be valid,

N ≤ (
1 + 2δ2σ2

hSNR
)M/2

(11)

where erf(δ) = ε and erf(·) is the error function. (11) clearly unveils
the fundamental tradeoff between degree of overcompleteness, N
vs M , and other model parameters, such as source signal strength

σ2
h, environment noise level σ2

n. Especially, the exponential growth
of N with increasing M indicates the degree of overcompleteness
possible and still have stable recovery.

3.2. K > 1: Analogy with Gaussian MAC

To generalize our discussion, let’s suppose throughout the paper that
si, i ∈ NK , are the indices of non-zero rows in X . Now the effective
form of Eq. (4) is given by

b1 = xs1as1 + xs2as2 + ... + xsK asK + w1 (12)

The corresponding scalar Gaussian channel is as follows,

b = h1a1 + h2a2 + ... + hKaK + n (13)

where n ∼ N(0, σ2
n). To bridge Eq. (12) and (13), we notice that

for i ∈ NK , fading channel gain hi correspond to the value of the
random source signals xsi . They are realized once and held fixed.
Next, we can view the existence of each non-zero entry as a user
with asi corresponding to the codeword selected by user i for trans-
mission. Equation (13) corresponds to one use of the channel and
(12) can be interpreted as the vector version obtained after M uses.
Hence, recovering the sparse solution and decoding multiple users’
messages are just different interpretation of the same problem. We
again employ information-theoretic results based on (13) to obtain
performance limits of the sparse recovery problem.

Note that channel (13), pictorially demonstrated in Fig.1-(b), is
recognized as a slow fading Gaussian MAC with K users. To char-
acterize the limited channel resource shared by competing users and
the potential trade-offs, a capacity region is usually computed to rep-
resent all possibilities of admissible user-rate allocations for success-
ful transmission. Assume all users hold the same power constraint,

i.e. var(ai) ≤ σ2
a, i ∈ NK . The capacity region of channel (13) is

then described by [9],

∑
i∈T

Ri ≤ 0.5 log

(
1 + SNR

∑
j∈T

h2
j

)
, ∀ T ⊆ NK (14)

where Ri is the rate for user i. Note that Eq. (14) consists of (2K−1)
inequalities. Equalities hold when all users are i.i.d. Gaussian, i.e.

ai ∼ N(0, σ2
a), i ∈ NK . This requirement also means all elements

in codebook A should be independently generated according to the
same Gaussian distribution to ensure the best performance.

It’s worth pointing out that because different non-zero entries
mirror different users, we implicitly assume different users won’t
select the same codeword, or they will collapse into one user oth-
erwise. Meanwhile, all users have access to a common codebook
A. Although these factors may have a negative impact on achievable
capacity region, it is negligible and convenient to assume all users
are operating at equal rate given in (7) when K � N . Hence, for
successful transmission, one requires that∑

i∈T

h2
i ≥

(
N2|T |/M − 1

)
SNR−1, ∀ T ⊆ NK

where | · | computes the cardinality of its argument. Assuming users

experience i.i.d. fading, i.e. hi ∼ N(0, σ2
h), i ∈ NK . Mathemat-

ically, the probability of success (i.e. complement of outage proba-
bility) can be lower-bounded by

P

⎛
⎝ ⋂

T⊆NK

{∑
i∈T

h2
i ≥

(
N2|T |/M − 1

)
SNR−1

}⎞
⎠

≥ P

⎛
⎝ ⋂

i∈NK

{
h2

i ≥
(
N2K/M − 1

)
SNR−1K−1

}⎞
⎠ (15)

= P
(
h2

1 ≥ (N2K/M − 1)SNR−1K−1)K
(16)

where {·} denote the probability event of its argument. (16) follows
from the i.i.d. fading gains. The requirement of upper-bounding
outage probability by ε translates into lower-bounding (16) by (1 −
ε). Hence, we obtain an explicit relation between model parameters
that achieves desired performance,

N ≤ (1 + 2Kδ2
1σ2

hSNR)
M
2K (17)

where erf(δ1) = 1− K
√

1 − ε. Inequality (17) reveals the constraint
on model parameters in the general sparse recovery problem. Note
that the degree of sparsity, K, comes into the fundamental tradeoff
with the most dominating effect as a factor in the exponent. It has a
negative impact and forces a reduction of the scale of the overcom-
plete representation in order to stably recover a sparse solution with
increasing number of non-zero entries.

3.3. Competition between non-zero entries

Fig. 2. Admissible regions for desired outage probability.

To show the competition between non-zero entries, we allow

fading channel gains to have different variances, i.e. hi ∼ N(0, σ2
i ),

which also means sparse source may have different signal powers.

Fig.2 shows the Admissible Region (AR) of power pairs (σ2
1 , σ2

2)
for two-user MAC (or equivalently two non-zero entries in X) with
outage probability ε ≤ 0.1, for M = 20, N = 100, SNR = 10dB.
The AR is the upper-right side of each curve.

We see that the AR for two non-zero entries is strictly contained
in that of each single non-zero case. Clearly, one signal source must
have larger power to survive when other sources are active concur-
rently. Signal sources behave like interferences to each other, leading
to a raised effective noise level.

4. MIMO VS. INVERSE PROBLEM WITH MMV

We extend our discussion to the case where multiple measurement
vectors are available for recovery, i.e. L > 1. Our MIMO channel
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interpretation will inject novel insight into the performance improve-
ment via MMV, which was originally explained [1] by the informa-
tion coupling engraved into the common sparsity profile in source
X . For MMV, the model of sparsity recovery (1) can be rewritten as

bj = [a1, . . . , aN ] [x1,j , . . . , xN,j ]
ᵀ + wj , j ∈ NL (18)

The effective form of (18) after removing zero terms is

bj = xs1,jas1 + ... + xsK ,jasK + wj , j ∈ NL (19)

The corresponding communication channel for receive antenna
j is

bj = hj,1a1 + ... + hj,KaK + nj , j ∈ NL (20)

Note that the channel model (20) can be equivalently written as

b = Ha + n (21)

where a = [a1, ..., aK ]ᵀ , b = [b1, ..., bL]ᵀ , n = [n1, ..., nL]ᵀ ,
and H = (hj,i), j ∈ NL, i ∈ NK . Channel model (21) can be
readily recognized as a slow fading Gaussian MIMO channel with

channel inputs a, outputs b, Gaussian noise n ∼ N(0, σ2
nI) and

channel matrix H whose elements are i.i.d. N(0, σ2
h). By match-

ing quantities in (19) and (20) as before, recovering sparse solution
with MMV resembles decoding messages passed through a MIMO
channel. We consider the MIMO channel (21) as a MAC with mul-
tiple receivers. This alternative interpretation emphasizes both the
competition between users and the advantage of joint decoding us-
ing multiple receivers. Similar to single receivers case in (13), we
will consider the probability to successfully decode messages from
any subset of users assuming receivers cooperate.

To proceed, define hi � [h1,i, ..., hL,i]
ᵀ , i ∈ NK . For F ⊆

NK , define HF as a submatrix consisting of H ’s columns indexed
by set F , i.e. HF defines a sub MIMO channel that connects a sub-
set of users indexed by F and all receivers. Next, define GF =
HF Hᵀ

F , if |F | ≥ L, or GF = Hᵀ
F HF , if |F | ≤ L. Similar to

(14), by treating (21) as a MAC with multiple receivers, successful
transmission requires∑

i∈T

Ri ≤ 0.5 log det (I + SNR GT ) , ∀ T ⊆ NK (22)

Due to the difficulty in analyzing the exact probability of suc-
cess associated with capacity region (22), we instead seek an upper-
bound and a lower-bound to gain insights. An upper-bound can be
obtained by only considering the sum-rate of users, i.e.

P

⎛
⎝ ⋂

T⊆NK

{∑
i∈T

Ri ≤ 0.5 log det (I + SNR GT )

}⎞
⎠

≤ P

⎛
⎝ ∑

i∈NK

Ri ≤ 0.5 log det (I + SNR GNK )

⎞
⎠

≤ P (0.5r log (1 + SNR λmax) ≥ K(log N)/M) (23)

where λmax is the largest eigenvalue of GNK , r � min{K, L}. (23)
is obtained by assuming again equal user rate and utilizing eigen-
decomposition. By lower-bounding (23) by (1 − ε), we reach

N ≤ (1 + ξ SNR)
rM
2K (24)

where
∫ ξ

0
pλmax(λ)dλ = ε, and pλmax(λ) is the probability density

function of λmax. Note that the dominating effect of L measurement
vectors comes through r as a factor in the exponent. It suggests
the significant potential increase in the ability of stably recovering
sparse solutions from using MMV.

On the other hand, to obtain a lower-bound of probability of
success, we proceed as follows,

P

⎛
⎝ ⋂

T⊆NK

{∑
i∈T

Ri ≤ 0.5 log det (I + SNR GT )

}⎞
⎠

≥ P

⎛
⎝ ⋂

T⊆NK

{∑
i∈T

Ri ≤ 0.5 log

(
1 + SNR

∑
j∈T

||hj ||2
)}⎞

⎠ (25)

≥ P
(||h1||2 ≥ (N2K/M − 1)SNR−1K−1)K

(26)

where (25) follows from the fact that the region is strictly contained
in the original capacity region, (26) follows the same vein of (15)
and (16). Lower-bounding (26) by (1− ε) yields an explicit tradeoff
between model parameters

γ

(
L

2
,
N2K/M − 1

2Kσ2
hSNR

)
≤ Γ(L/2)

(
1 − K

√
1 − ε

)
(27)

where γ(·, ·) and Γ(·) are two types of Gamma functions. For L =
1, (27) reduces to (17). For L = 2, (27) has closed-form as follows,

N ≤ (
1 − 2 log (1 − ε) σ2

hSNR
) M

2K (28)

Comparisons between (17), (24) and (28) explain the improved
performance by using MMV. The MIMO channel provides multiple
data paths between sources and receivers, and greatly improves the
system capacity. Especially, adding one measurement vector may
greatly boost the recoverability when L < K.

5. SUMMARY

We established the connection between inverse problems with spar-
sity requirement and channels of wireless communication. Channel
capacity along with outage analysis is utilized to uncover fundamen-
tal limits to the stable recovery problem in overcomplete representa-
tions and to understand the tradeoffs between the various parameters
involved. The analysis also explains the gain in performance result-
ing from using MMV.
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