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ABSTRACT

In this paper, a new class of lower bounds on the mean-square-error
(MSE) of unbiased estimators of deterministic parameters is pro-
posed. Derivation of the proposed class is performed by approxi-
mating each entry of the vector of estimation error in a closed Hilbert
subspace of L2. This Hilbert subspace is spanned by a set of linear
combinations of elements in the domain of an integral transform of
the likelihood-ratio function. It is shown that some well known lower
bounds on the MSE of unbiased estimators, can be derived from
this class by inferring the integral transform. A new lower bound
is derived from this class by choosing the Fourier transform. The
bound is computationally manageable and provides better prediction
of the signal-to-noise ratio (SNR) threshold region, exhibited by the
maximum-likelihood estimator. The proposed bound is compared
with other existing bounds in term of threshold SNR prediction in
the problem of single tone estimation.

Index Terms— Parameter estimation, mean-square-error bounds,
threshold SNR.

1. INTRODUCTION

Lower bounds on the mean-square error (MSE) in estimating a set
of model parameters from noisy observations constitute the best per-
formance that may be achieved by any estimator. Consequently, they
are used as a benchmark against which the performance of estima-
tors can be assessed and compared in the MSE sense.

Historically, the first lower bound on the MSE of any unbiased
estimator of deterministic parameters was the Cramér-Rao bound
(CRB) [1]. The CRB is widely used due to the following reasons.
First, it is simple to calculate and obtain closed form expressions,
which are useful for system analysis and design. Second, the ma-
ximum-likelihood estimator (MLE) attains the bound asymptotically.
The main disadvantage of the CRB is the fact that it is not tight for
“large” estimation errors, since it is derived using local statistical in-
formation of the observations only in the vicinity of the true parame-
ters. Another disadvantage is that regularity conditions on the likeli-
hood function are imposed. A tighter lower bound was proposed by
Bhattacharyya [2]. In similar to the CRB, the Bhattacharyya bound
(BHB) is not tight for “large” estimation errors due to the use of lo-
cal statistical information. Regularity conditions on the likelihood
function are required as well. Furthermore, derivation of the BHB
is cumbersome due to high order derivatives of the log-likelihood
function. Under the assumptions of uniform unbiasedness and fi-
nite second moments of the estimator, the tightest lower bound on
the MSE of any unbiased estimator was derived by Barankin [3].
Derivation of the Barankin bound (BB) is performed by approximat-
ing the estimation error in a closed Hilbert subspace of L2, spanned

by a set of likelihood-ratio (LR) functions [4]. Unfortunately, the
exact BB is practically incomputable.

Therefore, numerous works were devoted to derive computa-
tionally manageable approximations of the BB [5]-[8]. In [9] it was
shown that all the bounds derived in these works, including the CRB
and the BHB, may be unified under one general class in which the
BB is approximated via piecewise Taylor series expansions of the
likelihood function and the function of the parameters to be esti-
mated. Using this approach, a new computationally manageable and
tighter BB approximation was derived in [9]. The BB approximation
approach described in [9], has the following disadvantages. First, in
subintervals, where only zero-order Taylor series expansion is used,
a large amount of test points should be selected in order to achieve
a good approximation of the BB. This might increase the computa-
tional complexity of the bound. Second, although the use of deriva-
tives may reduce the number of test points and consequence better
approximation of the BB, in some cases (especially in cases of multi-
variate functions), the derivatives are not simple to compute and not
always the functions to be approximated are differentiable. Third,
the use of derivatives impose regularity conditions on the likelihood
function in the vicinity of each selected test point. Finally, there is no
analytical procedure for optimal selection of test points. Therefore,
numerical search methods, which become computationally cumber-
some as the number of test points and the dimensionality of the pa-
rameters increase are used.

In this paper, a new class of lower bounds on the MSE of unbi-
ased estimators is proposed. The proposed class is based on the ap-
proximation of each entry of the estimation error vector in a closed
Hilbert subspace of L2. This Hilbert subspace is spanned by a set of
linear combinations of elements in the domain of an integral trans-
form of the LR function. The use of integral transform generalizes
the traditional derivative and sampling operators used for computa-
tion of the bounds in [9]. By selection of the Fourier transform, a
new computationally manageable and tight lower bound is obtained.
The Fourier transform is easy to compute and in some cases has a
strong “energy compaction” property. Hence, it is shown that in
cases where most of the information in the frequency domain tends
to be concentrated in a few frequency components of the transform
easy selection of a small set of test frequencies, required for obtain-
ing a tight and computationally manageable bound, is enabled. The
proposed bound outperforms the family of bounds presented in [9]
in terms of tightness, computational manageability and prediction of
the transition region exhibited by the MLE.

The paper is organized as follows: In Section 2, a new class
of lower bounds on the MSE of any unbiased estimator is derived.
The relation of this class to the BB [3] is also discussed. In Section
3, some well known bounds are derived from the proposed class.
In Section 4, a new bound is derived from the proposed class by
selection of the Fourier transform. In Section 5, the applicability of
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the proposed bound and its superiority upon existing bounds, in term
of SNR transition region prediction is exemplified in the problem of
single tone estimation. Section 6, summarizes the main points of this
contribution.

2. DERIVATION OF A NEW CLASS OF LOWER BOUNDS

Let (Θ,D) denote a measurable space, where Θ ⊂ R
M and D

denotes a σ-algebra on Θ. Consider the estimation of g (θ0), where
g : Θ → R

L denotes a Lebesgue measurable function and θ0 ∈ Θ
is a deterministic unknown multivariate parameter. In this section,
a new class of bounds on the MSE of any unbiased estimator of
g (θ0), having finite second statistical moments, is derived. The
proposed class is derived by approximating each entry of the vector
of estimation error in a closed Hilbert subspace of L2. This Hilbert
subspace is spanned by a set of linear combinations of elements in
the domain of an integral transform of the LR function.

Derivation of the proposed class is preceded by the following
definitions and assumptions. Let (X ,F ,Pθ) denote a complete prob-
ability space, where X , F and Pθ denote an observation space of
points x, σ-algebra on X and a family of probability measures on
the measurable space (X ,F), parameterized by θ ∈ Θ, respec-
tively. The family Pθ is assumed to have densities f (x; θ) relative
to a σ-finite measure μ on (X ,F), such that the probability of ob-
serving A ∈ F is Pθ (A) =

∫
A

f (x; θ) dμ (x). The Hilbert space

of measurable functions ζ : X → C with finite second moments
w.r.t. Pθ0 is denoted by L2 (X ,F ,Pθ0). Let ĝ : X → R

L denote a
uniformly unbiased estimator of g (θ), such that

Ex;θ [ĝ (x)] =

∫
X

ĝ (x) f (x; θ) dμ (x) = g (θ) ∀θ ∈ Θ. (1)

It is assumed that ĝ (x) exists and [ĝ (x)]l ∈ L2 (X ,F ,Pθ0) ∀l =

1, . . . , L. Let ν (x, θ) � f(x;θ)
f(x;θ0)

denote the LR function, where it is

assumed that ν (x, θ) ∈ L2 (X ,F ,Pθ0) ∀θ ∈ Θ. A closed Hilbert
subspace of L2 (X ,F ,Pθ0) spanned by Sν = {ν (x, θ) , θ ∈ Θ}
is denoted by Hν .

Let e (x) = ĝ (x)−g (θ0) denote the vector of estimation error.
In [4] it was shown that the BB can be derived by approximating each
entry of e (x) in Hν . In this paper, the proposed class of bounds is
derived by approximation of each entry of e (x) in a closed subspace
of Hν . This subspace is spanned by a set of linear combinations of
elements in the domain of an integral transform, defined on Sν .

An integral transform on Sν is defined in the following manner.
Let (Λ,D′) denote a measurable space, where Λ ⊂ R

M and D′

denotes a σ-algebra on Λ. The space (Θ × Λ,D ×D′) denotes
a product measurable space where D × D′ is the σ-algebra on the
cartesian product Θ×Λ. Let h : Θ×Λ → C

P denote a Lebesgue
measurable function, an integral transform on Sν is given by

(Thν) (τ ) =

∫
Θ

h (τ , θ) ν (x, θ) dθ = η (x, τ ) , (2)

where τ ∈ Λ. The set Sη = {η (x, τ ) , τ ∈ Λ} denotes the domain
of (Thν).

A closed subspace of Hν , spanned by a set of linear combina-
tions of elements in Sη is constructed in the following manner. Let
a : Λ → C

P denote a Lebesgue measurable function, a linear com-
bination of elements in Sη is given by

ϕa,h (x) =

∫
Λ

aH (τ ) η (x, τ ) dτ . (3)

It is assumed that a ∈ Qh, where Qh = {a : ϕa,h (x) ∈ Hν}.
In [11] it is shown that a sufficient condition for ϕa,h (x) ∈ Hν

is absolute integrability of aH (τ )h (τ , θ) ν (x, θ) on Θ × Λ for
a.e. x ∈ X . Hence, a closed Hilbert subspace of Hν , spanned by

S(h)
ϕ = {ϕa,h (x) ,a ∈ Qh} is denoted by H(h)

ϕ .
According to (1)-(3) and using the Hilbert projection theorem

[10], in [11] it is shown that the best approximation of [e (x)]l, l =

1, . . . , L in H(h)
ϕ , in the sense of minimum norm of approximation

error in L2 (X ,F ,Pθ0), yields

ẽ (x) =

∫
Λ

∫
Λ

ΓH
h

(
τ ′) Gh

(
τ ′, τ

)
η (x, τ ) dτ ′dτ , (4)

where ẽ (x) denotes the approximation of e (x),
Γh (τ ) =

∫
Θ

h (τ , θ) ξT (θ) dθ and ξ (θ) = g (θ) − g (θ0). The

matrix function Gh (·, ·) is defined in the following manner. Let
Kh (τ , τ ′) =

∫
Θ

∫
Θ

h (τ , θ) K (θ, θ′)hH (τ ′, θ′) dθdθ′, where

K (θ, θ′) = Ex;θ0 [ν (x, θ) ν (x, θ′)]. Provided that Kh (·, ·) is
invertible, Gh (·, ·) is the inverse of Kh (·, ·) such that∫
Λ

Kh (τ , τ ′)Gh (τ ′, τ ′′) dτ ′ = δ (τ − τ ′′) IP , where δ (·) and

IP denote the Dirac’s delta function and the P -dimensional identity
matrix, respectively.

A lower bound on the MSE matrix, Ex;θ0

[
e (x) eT (x)

]
is de-

rived in the following manner. Let u (x) = e (x)− ẽ (x), denote the
vector of approximation error. According to the Hilbert projection
theorem, each entry of u (x) is orthogonal to each entry of ẽ (x).
Furthermore, the autocorrelation matrix of u (x) is Hermitian posi-
tive semidefinite. Therefore,

Ex;θ0

[
u (x)uH (x)

]
= Ex;θ0

[
e (x) eT (x)

]
−Ex;θ0

[
ẽ (x) eT (x)

]
� 0.

(5)

Hence, according to (1), (2), (4) and (5) a lower bound on the MSE
matrix is given by

C (h) =

∫
Θ

∫
Θ

ξ
(
θ′) G̃h

(
θ′, θ

)
ξT (θ) dθ′dθ, (6)

where G̃h (θ′, θ) =
∫
Λ

∫
Λ

hH (τ ′, θ′)Gh (τ ′, τ )h (τ , θ)dτ ′dτ .

Observing (6), one can notice that numerous bounds can be derived
by inference of h (·, ·).

In the following, the relation of the proposed class of bounds in
(6) to the BB is discussed. Approximation of each entry of e (x) in
all Hν yields the following bound

C′ =

∫
Θ

∫
Θ

ξ
(
θ′) G

(
θ′, θ

)
ξT (θ) dθ′dθ, (7)

which is actually an integral form of the BB. The scalar function
G (·, ·) is the inverse of K (·, ·), such that

∫
Θ

K (θ, θ′) G (θ′, θ′′) dθ′

= δ (θ − θ′′). Due to the fact that Hν ⊇ H(h)
ϕ it is obvious that

C′ � C (h) ∀h : C (h) ≺ ∞. In [11], it is shown that for any in-
vertible integral transform, Th, the bound C′ is derived from (6). If
Th is non-invertible, G (θ′, θ) is only approximated by G̃h (θ′, θ).
Since C′ � C (h)∀h : C (h) ≺ ∞, this will produce less tighter
bounds than C′. However, calculation of C′ involves computation of
the eigenfunctions and eigenvalues of K (θ, θ′) in order to derive its
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inverse, G (θ′, θ). Unfortunately, in many cases this task is analyt-
ically impossible and consequently C′ is practically incomputable.
Hence, it is preferable to use non-invertible integral transforms in or-
der to obtain computationally manageable bounds. In the following
section, it is shown that some well known bounds on the MSE of un-
biased estimators can be derived from (6) by inference of h (·, ·). In
Section 4, a new bound is derived by choosing the Fourier transform.

3. DERIVATION OF EXISTING BOUNDS VIA CERTAIN
SELECTION OF INTEGRAL TRANSFORMS

In this section, it is shown that some well known bounds on the MSE
of unbiased estimators can be derived from the class of bounds in (6)
by inference of h (·, ·). Due to space limit considerations, proofs are
given only in the full paper [11].

1. The Bhattacharyya bound [2] is obtained by selecting

h (τ , θ) =
[

∂δ(τ−θ)
∂τ

· · · ∂P δ(τ−θ)

∂τ⊗P

]T

δ (τ − θ0),

where ∂P

∂τ⊗P denotes the vector of derivatives
∂P

∂τi1∂τi2 ···∂τiP
; ip = 1, . . . , M . One can notice that by

choosing P = 1, the CRB [1] is obtained. In this paper it is

assumed that δ (τ ) = lim
ε→0

(
2πε2

)− M
2 exp

(
− ‖τ ‖2

2
2ε2

)
, where

‖ · ‖2 denotes the l2 norm.

2. The McAulay-Seidman (MS) bound [6] is obtained by select-

ing h (τ , θ) = (δ (τ − θ) − δ (θ − θ0))
N∑

n=1

δ (τ − θn),

where θn ∈ Θ, n = 1, . . . , N denotes a test point. One can
notice that by choosing N = 1 the Hammersley-Chapman-
Robbins (HCR) bound [5] is obtained.

3. The McAulay-Hofstetter (MH) bound [7] is obtained by se-

lecting h (τ , θ) =

⎡
⎢⎣

(
∂δ(τ−θ)

∂τ

)T

δ (τ − θ0)
N∑

n=1

δ (τ − θn) δ (τ − θ)

⎤
⎥⎦.

4. The general form of bound offered by Quinlan et al. [9] is
obtained by selecting h (τ , θ) =⎡
⎢⎢⎣

[
∂δ(τ−θ)

∂τ
· · · ∂P δ(τ−θ)

∂τ⊗P

]T M∑
m=0

δ (τ − θm)

(δ (τ − θ) − δ (θ − θ0))
N∑

n=1

δ (τ − θn)

⎤
⎥⎥⎦.

We note that in practice, it was offered in [9] to use M = N
and P = 1. One can notice that by choosing M = 0 the Abel
bound [8] is obtained.

Quinlan et al. showed in [9] that all the bounds above may be unified
under one general class of bounds in which the BB is approximated
via piecewise Taylor series expansions of the likelihood function and
the function of the parameters to be estimated. This approach has
some disadvantages thoroughly discussed in the introduction sec-
tion. In order to overcome these disadvantages, a new bound on the
MSE of any unbiased estimator, derived by using the Fourier trans-
form, is proposed in the following section.

4. DERIVATION OF A NEW BOUND VIA THE FOURIER
TRANSFORM

The Fourier transform is easy to compute and in some cases has
a strong “energy compaction” property. Therefore, in cases where

most of the information in the frequency domain tends to be concen-
trated in a few frequency components, the Fourier transform is uti-
lized for approximation and data compression. Motivated by these
properties, a new bound is derived from (6) by choosing the Fourier
transform. Let

h (τ , θ) =

⎡
⎢⎣

[
∂δ(τ−θ)

∂τ

]T

δ (τ − θ0)
J∑

j=1

N∑
n=1

δ (τ − Ωj) δ (θ − θn) exp
(−iτ T θ

)
⎤
⎥⎦ ,

(8)
where Ωj , j = 1, . . . , J denotes a frequency test bin and θn ∈
Θ, n = 1, . . . , N denotes a test point. In [11] it is shown that sub-
stitution of (8) into (6) yields the following bound:

CFourier = ΓI−1
FIMΓT + QWH

(
WRWH

)−1

WQT , (9)

where the Fisher information matrix is denoted by

IFIM = Ex;θ0

[(
∂log f(x;θ)

∂θ

∣∣∣
θ=θ0

)T (
∂log f(x;θ)

∂θ

∣∣∣
θ=θ0

)]

and Γ = ∂g(θ)
∂θ

∣∣∣
θ=θ0

. The matrix Q = ΓI−1
FIMD − Φ,

where Φ = [ξ (θ1) , . . . , ξ (θN )] and D = [d (θ1), . . . ,d (θN )].

The vector d (θn) = −
(

∂KLD[f(x;θn)||f(x;θ)]
∂θ

∣∣∣
θ=θ0

)T

, where the

term KLD [f (x; θn) ||f (x; θ)] is the Kullback-Leibler divergence
[12] of f (x; θ) from f (x; θn). The matrix R = Ψ − DT I−1

FIMD,
where the elements of Ψ are given by [Ψ]m,n = K (θm, θn) ,
m, n = 1, . . . , N . Finally, the elements of the Fourier matrix are
given by [W]j,k = exp

(−iΩT
j θk

)
, j = 1, . . . , J, k = 1, . . . , N .

We note that the bound in (9) is composed of the CRB supple-
mented by a positive semidefinite term. The positive-semidefiniteness
of the supplemental term stems from the positive-semidefiniteness of
WRWH 1. Therefore, the only required regularity condition is the
condition used in derivation of the CRB [1]. In cases where this con-
dition is not satisfied, the first element of h (·, ·) in (8) may be dis-

carded and (9) becomes C′
Fourier = ΦWH

(
WΨWH

)−1
WΦT.

Observing (9), one can notice that the matrix WRWH is the
two-dimensional discrete Fourier transform of R and that the matrix
WH

(
WRWH

)−1
W is an approximation of R−1. Therefore,

frequency bins for which the approximation error of R−1 is mini-
mized should be selected when constructing the matrix W. Hence,
in cases where the power spectrum of R is concentrated in a subset,
F, of the frequency space, {Ωj}J

j=1 is selected by uniform sampling

of a bounded subset of FC , where C denotes a complement. As-
suming that Θ is bounded, the set {θn}N

n=1 is selected by uniform
sampling of Θ. Whenever Θ is not bounded, uniform sampling of
a bounded subset of Θ is performed. In comparison to the bounds
in [5]-[9], in which {θn}N

n=1 is reselected for each evaluation of the

bounds as a function of SNR or sample size, {Ωj}J
j=1 and {θn}N

n=1

are selected here only once in order to compute the proposed bound.
In comparison to the bound in [9] the proposed bound avoids the

use of derivatives in test points, other than the true parameter, and
utilizes the Fourier transform instead. Therefore, the only regularity
condition is the one required for derivation of the CRB [1]. Hence,
the proposed bound is much easier to compute and as exemplified
by simulations outperforms the family of bounds presented in [9] in
terms of tightness, computational manageability and prediction of
the transition region exhibited by the MLE in nonlinear estimation
problems.

1Positive-semidefiniteness of WRWH is proved in [11].
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5. SIMULATIONS

In this subsection, the bound in (9) is compared to other existing
bounds, described in [1], [5]-[9], in the problem of single tone esti-
mation with Gaussian noise. The comparison criterion is prediction
of the transition region exhibited by the MLE.

The observation model is given by x = sa (θ0) + n, where x
denotes an L × 1 observation vector and s ∈ C is a known sig-
nal amplitude. The lth element of a (θ0) is given by [a (θ0)]l =
exp (i (l − 1) 2πθ0), where θ0 ∈ [−0.5, 0.5] is the true tone to be
estimated and n denotes an L × 1 complex circular Gaussian noise
vector, with zero mean and known covariance Cn = σ2IL. Hence,

the terms composing (9) are given by IFIM = 2SNR‖ ȧH (θ0) ‖2

2,

where ȧ (θ0) = ∂a(θ)
∂θ

∣∣∣
θ=θ0

and SNR = |s|2
σ2 , Γ = 1,

d (θn) = 2SNRRe
{
ȧH (θ0) [a (θn) − a (θ0)]

}
,

Φ = [θ1 − θ0, . . . , θn − θ0] and K (θm, θn) =

exp
(
2SNRRe

{
[a (θn) − a (θ0)]

H [a (θm) − a (θ0)]
})

.

The comparison was held under the following conditions. The
values of θ0 and L were set to 0 and 10, respectively. The pa-
rameter space, Θ ⊂ R, was sampled uniformly, with sampling in-
terval of Δθ = 1

N
, where N = 210. Hence, θn = n−1

N
− 1

2
;

n = 1, . . . , N and [W]j,n = exp
(−i

ωj

Δθ
θn

)
, where ωj ∈ [0, 2π];

j = 1, . . . , J . Observing Fig. 1, in which the power spectrum of
R is depicted, one can notice that due to the structure of K (·, ·)
most of the power is concentrated in low frequencies. Therefore,
according to the procedure described in Section 4, it is sufficient
to select a small set of high test frequencies in order to obtain a
good reconstruction of R−1 in the sense of minimum approxima-
tion error. Hence, for all values of SNR, the test frequencies were
selected once by uniform sampling of the interval ρ =

[
4π
5

, 6π
5

]
.

The proposed bound was evaluated twice, for J = 4 and J = 32
equally spaced frequency samples of ρ. For each SNR value, all
other bounds were computed as supremum over the possible values
of {θn}3

n=1 = [0, mΔθ,−mΔθ] , m = 1, . . . , 29 as described in
[9].

Fig. 2 depicts the compared bounds on the root MSE (RMSE) as
a function of SNR. The RMSE of the MLE is also depicted in order
to compare the threshold behavior of the bounds. It is observed that
the proposed bound is the tightest and allows better prediction of the
SNR threshold value. The proposed bound exceeds the RMSE of the
MLE for low SNR due to the the lack of a priori information in the
proposed bound and the fact that in this region the MLE is biased.

6. CONCLUSIONS

In this paper, a novel class of lower bounds on the MSE of any unbi-
ased estimator is proposed. It is shown that the bounds in this class
are derived by approximating each entry of the vector of estimation
error in a closed Hilbert subspace of L2. This Hilbert subspace is
spanned by a set of linear combinations of elements in the domain
of an integral transform of the LR function. Using the Fourier trans-
form, a new computationally manageable and tight lower bound is
derived from this class. It is shown that in cases where the power
spectrum is concentrated in low frequencies a small set of high fre-
quency test bins is sufficient in order to obtain a lower bound with su-
perior computational manageability and tightness in comparison to
the bounds in [1], [5]-[9]. Finally, finding some other integral trans-
forms for which new computationally manageable and tight lower
bounds could be derived from the proposed class in (5) should be
included in a future research.
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Fig. 1. The power spectrum of the matrix R in the scenario of single
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