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ABSTRACT

A complex random vector is called improper (noncircular)
if it is correlated with its complex conjugate. We consider
measures for the degree of impropriety that are invariant un-
der linear transformation. These measures are functions of
the canonical correlations between the vector and its com-
plex conjugate, which have been termed the circularity coef-
cients. However, we show that these circularity coef cients
do not tell the whole story: Two random vectors with identi-
cal covariancematrix and identical circularity coef cients can
still behave differently in second-order estimation and detec-
tion.

Index Terms— Improper complex random vector, widely
linear, strong uncorrelating transform, circularity coef cients,
canonical correlations.

1. INTRODUCTION

Let s ∈ C
n denote a zero-mean complex random vector with

covariance matrix R = E ssH and complementary covariance
(or pseudo-covariance)matrix R̃= E ssT . If R̃= 0, s is called
proper, otherwise improper. Improper complex random vec-
tors and processes have received a great deal of attention in
the literature lately: Correctly accounting for impropriety can
lead to signi cant performance gains in many communica-
tions and signal processing applications.
In this paper, we are investigating numerical measures

for the degree of impropriety of complex random vectors.
Because propriety is preserved by linear but not widely lin-
ear (linear–conjugate linear) transformations, we require that
these measures be invariant under linear transformation. As a
consequence, the measures must be functions of the canoni-
cal correlations between s and s∗ [1]. These canonical corre-
lations have been called circularity coef cients by [2].
There is, however, an important caveat. Two random vec-

tors s1 and s2 with identical covariancematrixR and identical
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circularity coef cients, and hence identical degree of impro-
priety, can still behave differently in second-order estimation
and detection. We will illustrate this with a simple estimation
problem.

2. CIRCULARITY COEFFICIENTS

2.1. Augmented algebra

In order to describe the second-order characteristics of s, it
is convenient to work with an augmented vector s= [sT ,sH ]T

whose covariance matrix

R= E s sH =

[
R R̃
R̃∗ R∗

]
(1)

is called the augmented covariance matrix of s [3]. The ad-
vantage of working with this augmented algebra is that it al-
lows access to the vast number of results on 2× 2 block ma-
trices.
A transformation of the form s′ = A1s+A2s∗ is called

widely linear [4]. It may be represented in augmented form
as

s′ =
[
s′
s′∗

]
= As=

[
A1 A2
A∗
2 A∗

1

][
s
s∗

]
. (2)

Note that in this augmented representation,R andA∈ C2n×2n

satisfy a particular block structure where the northwest is the
conjugate of the southeast block, and the northeast is the con-
jugate of the southwest block. In factorizations of R, all fac-
tors must also have this block structure.

2.2. Strong uncorrelating transform

Propriety is preserved under linear (but not widely linear)
transformation, which includes rotation and scaling of s. A
maximal set of invariants for the augmented covariance ma-
trix R under nonsingular linear transformation is the set of
canonical correlations [5] between s and s∗ [1]. This means
that any function of R that is invariant under linear trans-
formation must be a function of these canonical correlations.
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Following [6], we begin with the coherence matrix

M= R−1/2R̃R−T/2. (3)

SinceM is complex symmetric,M=MT , there exists a spe-
cial singular value decomposition (SVD), called Takagi’s fac-
torization, which is

M= FKFT . (4)

The complex matrix F is unitary, andK= Diag(k1,k2, ...,kn)
contains the canonical correlations 1≥ k1 ≥ k2 ≥ ·· · ≥ kn ≥ 0
on its diagonal. The latent description s′ = FHR−1/2s is said
to be given in canonical coordinates. The canonical coordi-
nates are uncorrelated and have unit variance:

E s′is
′∗
j = E s′is

′
j = 0 for i �= j (5)

E |s′i|
2 = 1. (6)

However, they are generally improper as

E s′2i = ki. (7)

In [2], vectors that are uncorrelated with unit variance, but
possibly improper, are called strongly uncorrelated, and the
transformation FHR−1/2, which transforms s into canonical
coordinates s′, is called the strong uncorrelating transform.
The canonical correlations {ki}ni=1 are referred to as the cir-
cularity coef cients of s in [2]. A more thorough discussion
of properties of {ki} is contained in [2, 1]. The insight that
the {ki} are canonical correlations is critical as it enables us
to utilize the many results on this topic in the literature.
The canonical coordinates are given by s′ = FHR−1/2s, so

that their complementary correlation matrix is

E s′s′T = FHR−1/2R̃R−T/2F∗ = FHMF∗. (8)

In order to make this matrix diagonal, Takagi’s factorization
(4) rather than the “regular” SVDM=UKVH (that generally
yieldsU �=V∗) must be employed. It is shown in [7, Sec. 4.4]
how to compute the Takagi factorization. If all circularity
coef cients are distinct, the matrix F is the product of the
matrix of singular vectors U with a diagonal unitary matrix.

2.3. Entropy

Combining our results so far and proceeding along the lines
of [6], we may factor R as

[
R R̃
R̃∗ R∗

]
=

[
R1/2 0
0 R∗/2

][
F 0
0 F∗

][
I K
K I

]

×

[
FH 0
0 FT

][
RH/2 0
0 RT/2

]
. (9)

Note that each factor is an augmented matrix. The factoriza-
tion (9) establishes, similarly to [8],

detR= det2R det(I−K2)

= det2R
n

∏
i=1

(1− k2i ). (10)

This allows us to derive the connection between the entropy of
an improper Gaussian random vector with augmented covari-
ancematrixR and the corresponding proper Gaussian random
vector with covariance matrix R (see [2, Cor. 2]) in the bar-
gain as

Himproper =
1
2
log[(πe)2ndetR]

= log[(πe)n detR]︸ ︷︷ ︸
Hproper

+
1
2
log

n

∏
i=1

(1− k2i ). (11)

This again shows the classic result that Himproper ≤ Hproper,
and the circularity coef cients determine the loss in entropy.

3. DEGREE OF IMPROPRIETY

We would now like to introduce measures for the degree of
impropriety. We want these measures to be invariant under
linear transformation because propriety itself is preserved by
linear transformation. Thus, these measures must be func-
tions of the circularity coef cients {ki}, but several functions
seem plausible, for instance:

d1 = 1−
n

∏
i=1

(1− k2i ) = 1−detRdet−2R (12)

d2 =
n

∏
i=1
k2i = det(R̃R−∗R̃∗)det−1R (13)

d3 =
1
n

n

∑
i=1
k2i =

1
n
tr(R−1R̃R−∗R̃∗). (14)

These functions have been discussed in [9] as measures of
multivariate association between an arbitrary pair of real vec-
tors. They satisfy 0≤ di ≤ 1, and can be de ned for reduced
rank r < n, considering only the r largest circularity coef -
cients in the computation. When the eigenvalues of R are
speci ed, it is possible to derive tight upper and lower bounds
on the degree of impropriety [10].
We consider d1 the most compelling measure mainly for

two reasons. Firstly, as shown above in (11), d1 connects the
entropy of the proper and improper cases. Secondly, it is a
measure of the linear dependence between s and s∗ and as
such, can be used to design a generalized likelihood ratio test
for impropriety [8, 1].

3.1. Scalar case

In the case of a scalar random variable s with covariance R=
E |s|2 and complementary covariance R̃ = E s2, the measure
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Fig. 1. QPSK with I/Q imbalance.

d1 becomes particularly simple:

d1 =
|R̃|2

R2
. (15)

For example, M-PSK, M ≥ 4, and QAM symbols are proper,
d1 = 0, whereas BPSK and PAM symbols are maximally im-
proper, d1 = 1. This re ects the fact that M-PSK and QAM
are rotationally symmetric, whereas BPSK and PAM aremax-
imally statistically redundant.
As another example, consider QPSK with I/Q imbalance

characterized by gain imbalance (factor) G > 0 and quadra-
ture skew φ, as depicted in Fig. 1. It is easy to show that

d1 =
|G2e2 jφ −1|2

(1+G2)2
=
G4−2G2 cos2φ+1

(1+G2)2
. (16)

Clearly, QPSK with perfect I/Q balance has G = 1, φ = 0,
and thus d1 = 0, whereas the worst possible I/Q imbalance
φ = π/2 results in d1 = 1.

3.2. Most improper vectors

With speci ed covariance matrix R, it follows from (3) and
(4) that all valid complementary covariance matrices are of
the form

R̃= R1/2FKFTRT/2, (17)
where F is an arbitrary unitary matrix, and K is a matrix of
arbitrary circularity coef cients.
In the most improper caseK= I, we have d1 = d2 = d3 =

1, and (17) becomes

R̃= R1/2FFTRT/2. (18)

Then, the augmented covariance matrix

R=

[
R R1/2FFTRT/2

R∗/2F∗FHRH/2 R∗

]
(19)

has a zero Schur complementR− R̃R−∗R̃∗ = 0, which means
that the rank ofR equals the rank ofR.1 If s is most improper,

1We assume R to be invertible, so the rank of R must be n.

the conjugate s∗ is perfectly linearly estimable from s (obvi-
ously, s∗ can always be written as a widely linear function of
s.)

4. THE CIRCULARITY COEFFICIENTS DO NOT
TELL THEWHOLE STORY

One might be tempted to assume that two random vectors s1
and s2 with the same covariance matrix R and the same circu-
larity coef cients {ki}ni=1 would behave identically in second-
order estimation and detection. This is not the case. We will
illustrate this for a simple estimation scenario.

4.1. Widely linear estimation

Consider estimating an improper randommessage swith aug-
mented covariance matrix R in complex white (proper) Gaus-
sian noise n with augmented covariance matrix N0I. The ob-
servations are

r= s+n, (20)

and n is assumed to be uncorrelated with s. The optimum
widely linear estimator that minimizes the mean squared error
can be written in augmented representation as [3]

ŝ= R(R+N0I)−1r. (21)

The MMSE is [3, 11]

E‖s− ŝ‖2 = 1
2 tr(R−R(R+N0I)−1RH) (22)

=
N0
2

2n

∑
i=1

λi
λi+N0

, (23)

where {λi}2ni=1 are the eigenvalues of R. For xed noise level
N0, it follows from [12, 3.C.1] that the MMSE is a Schur-
concave function2 of {λi}2ni=1. Hence, if s1 and s2 are two ran-
dom vectors and the eigenvalues of the augmented covariance
matrix of s1 majorize those of s2, then the MMSE estimating
s1 is less than the MMSE estimating s2.
Let {λi}2ni=1 again denote the eigenvalues ofR, and { i}

n
i=1

the eigenvalues of R. The following majorization inequality
was established by [11]:

[λ1, ...,λ2n]T ≺ [2 1, ...,2 n,0, ...,0]T . (24)

This says that, for given R, the Schur-concave MMSE (23) is
minimized if

[λ1, ...,λ2n]T = [2 1, ...,2 n,0, ...,0]T . (25)

2see the Appendix for the de nitions of majorization and Schur-concave
functions
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4.2. Most improper vectors

It follows from (25) that in order to minimize the MMSE for
a given covariance matrix R, the augmented covariance ma-
trix R must have rank n, i.e., zero Schur complement R−
R̃R−∗R̃∗ = 0. Thus, s must be most improper. However, will
any most improper vector with K = I minimize the MMSE?
This is what Schreier et al. [11] claimed but, unfortunately, it
is wrong.
The crux of the matter is that the eigenvalues of R given

by (19) do not necessarily satisfy (25). This can be shown by
simple computation for numerical examples. However, there
is indeed at least one most improper vector with covariance
matrix R such that the augmented covariance matrix R has
the eigenvalues (25). If R=UMUH is the eigenvalue decom-
position of R, then choosing the complementary covariance
as R̃ = UMUT results in K = I and R satisfying (25). If R
has repeated eigenvalues, then there will be more than one
possible choice for R̃.
This shows that there can be two random vectors with

the same covariance matrix R and the same circularity coef-
cients (K = I), but different performance in a second-order
estimation problem.

5. CONCLUSION

We have investigated measures for the degree of impropri-
ety of a complex random vector. Because propriety is pre-
served by linear transformation, these measures are functions
of the circularity coef cients. Nevertheless, we have shown
that the circularity coef cients do not tell the full story. In
particular, we have established the following result for most
improper random vectors (K= I): In order to maximize (min-
imize) a Schur-convex (Schur-concave) function of {λi}2ni=1
for xed R, it is necessary, but not suf cient, that s be most
improper. Examples of Schur-concave and -convex functions
are MMSE (as considered above) and de ection (as a perfor-
mance measure for detection [11]).

6. APPENDIX: MAJORIZATION

This appendix de nes majorization and Schur-convex func-
tions. An excellent overview of majorization theory is given
in [12].
A vector x∈R

n is said to bemajorized by a vector y∈R
n,

written as x≺ y, if

r

∑
i=1
x[i] ≤

r

∑
i=1

[i], r = 1, ...,n, (26)

with equality for r = n. Here, [·] is a permutation such that
x[1] ≥ ·· · ≥ x[n]. Intuitively, if x ≺ y, then the components of
x are “less spread out” or “more equal” than the components
of y.

The idea of majorization becomes most powerful when it
is combined with the concept of Schur-convexity. Functions
that are Schur-convex preserve the preordering of majoriza-
tion. A real-valued function f de ned on a set D⊂ R

n is said
to be Schur-convex on D if

x≺ y on D⇒ f (x) ≤ f (y), (27)

and Schur-concave on D if

x≺ y on D⇒ f (x) ≥ f (y). (28)
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