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ABSTRACT

This paper addresses the degree of second-order non-circularity
or impropriety of complex random variables and its purpose is
to complement previously available theoretical results. New
properties of the non-circularity rate (also called circularity
spectrum) are given for scalar and multidimensional complex
random variables with a particular attention paid to rectilinear
random variables, i.e., with maximum circularity spectrum.
Finally, the maximum likelihood estimate of the circularity
spectrum in the Gaussian case and asymptotic distribution of
this estimate for arbitrary distributions are given.

Index Terms— circular/noncircular, proper/improper, rec-
tilinear signal, coherence matrix, canonical correlations, cir-
cularity spectrum

1. INTRODUCTION

Recently, there has been an increased awareness that signifi-
cant performance gains can be achieved by taking the infor-
mation contained in the complementary covariance [1] ma-
trix R′

z = E(zzT ) (termed as relation matrix in [2], pseudo
covariance matrix in [3] and second covariance in [4]) into
account in second-order algorithms previously based on the
standard covariance matrix Rz = E(zzH) only (see, e.g.,
[5]). In the past, it was often assumed that R′

z = 0, a case
that is referred to as either proper, second-order circular or cir-
cularly symmetric. However in digital communications, mod-
ulated signals may be improper or second-order non-circular
but not necessarily with a maximum non-circularity rate, i.e.,
rectilinear as it has been often considered in the literature
(e.g., in direction of arrival estimation, [6, 7]). For example,
binary phase shift keying (BPSK) modulation is rectilinear in
contrast to Gaussian minimum shift keying (GMSK) modula-
tion which is improper but not rectilinear after derotation.
This paper addresses the measure of the degree of second-

order non-circularity or impropriety of complex random vari-
ables which can be used to come up with appropriate algo-
rithms or to assess detection or estimation performances of
algorithms adapted to improper signals. Its purpose is to com-
plement previously available theoretical results [1, 2, 3, 8,
9]. New properties of the canonical correlation between z
and z∗ (also called non-circularity rate in [4] and circular-

ity spectrum in [3]) and of the augmented covariance matrice
Rz̃ = E(z̃z̃H) with z̃ def= (zT , zH)T are given for scalar and
multidimensional complex random variables with a particu-
lar attention paid to rectilinear random variables, i.e., with
maximum circularity spectrum. Finally, maximum likelihood
(ML) estimate of the circularity spectrum in the Gaussian case
and asymptotic distribution of this estimate for arbitrary dis-
tributions are given.
The paper is organized as follows. Section 2 is dedicated

to scalar complex random variables, while, Section 3 extends
these results to multidimensional complex random variables.

2. SCALAR COMPLEX RANDOM VARIABLE

Let z = x + iy denote a zero-mean second-order scalar com-
plex random variable with variance σ2

z
def= E|z2| and comple-

mentary variance E(z2). The non-circularity rate ρ ∈ [0, 1]
and the non-circularity phase φ ∈ [0, π[ of z are defined by

ρe2iφ def=
E(z2)
E|z2| . (1)

If ρ = 0, z is called proper [1] or circular to the second-order
[2] and if ρ = 1, z is called rectilinear [10] because in this
case z = |z|eiφ and z lies in one line of C. If ρco

def= E(xy)
σxσy

with σx
def=

√
E(x2) and σy

def=
√

E(y2), denotes the corre-
lation coefficient between the real x and imaginary y parts of
z, we prove the following relations between ρ and ρco

Result 1 The non-circularity rate ρ of a scalar complex ran-
dom variable z and the correlation coefficient ρco between
its real x and imaginary y parts are related by the following
relations

• ρ = 1 ⇔ ρco = 1,

• ρ = 0 ⇒ ρco = 0, the converse is false because ρco =
0 does not imply σx = σy,

• ρ ≤ ρco and ρ = ρco when σx = σy .

Proof These relations are straightforwardly deduced from the
following expression of the non-circularity rate:

ρ =
√

( σx
σy

− σy
σx

)2

( σx
σy

+
σy
σx

)2
+ 4ρ2

co
1

( σx
σy

+
σy
σx

)2
.
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To interpret the non-circularity phase φ of z, we prove the
following result

Result 2 For a non-circular scalar complex random variable
z, the orthogonal regression line of the couple (x, y) has a
direction given by the non-circularity phase φ and the mean
square orthogonal distance to this line is given1 by E(d2) =
σ2

z

2 (1 − ρ).

Proof The orthogonal regression line (see e.g., [11]) of the
couple (x, y) is given by the line orthogonal to the eigenvec-
tor u associated with the minimum eigenvalue λ of the co-

variance matrix Rw of w def=
(

x
y

)
and the mean square

orthogonal distance E(d2) to this line is given by λ.
To solve easily this problem, it is convenient to work with

the augmented vector z̃ def=
(

z
z∗

)
whose covariance ma-

trix Rz̃ is related to Rw by Rw = 1
2T

HRz̃T using z̃ =
√

2Tw, where T is the unitary matrix 1√
2

(
1 i
1 −i

)
. Be-

cause the minimum eigenvalue and the associated unit eigen-

vector of Rz̃ = σ2
z

(
1 ρe2iφ

ρe−2iφ 1

)
are λ = σ2

z(1 −

ρ) and u = i√
2

(
eiφ

−e−iφ

)
, the minimum eigenvalue and

the associated unit eigenvector of Rw are 1
2λ and THu =( − sin φ

cos φ

)
⊥

(
cos φ
sin φ

)
.

Consequently, the larger is ρ, the smaller is the mean square
distance of (x, y) to the orthogonal regression line and this
distance is zero if and only if z is rectilinear along this or-
thogonal regression line whose direction is given by the non-
circularity phase φ.
Now, let us consider the estimation of the non-circularity

rate ρ from T independent identically distributed realizations
(zt)t=1,..,T for which the following result is proved in Appen-
dix A.

Result 3 When zt is Gaussian distributed, the maximum like-
lihood (ML) estimate (ρT , φT ) of (ρ, φ) is given by

( |�T
t=1 z2

t |�T
t=1 |z2

t |
,

1
2Arg(

�T
t=1 z2

t�T
t=1 |z2

t |
)
)
. Furthermore, when zt is arbitrarily dis-

tributed, the sequence
√

T (ρT − ρ) converges in distribution
to the zero-mean Gaussian distribution of variance

cρ = 1 − 2ρ2 + ρ4 + ρ2κ +
κ

2
+

ρ2�(κ′)
2

− 2ρ2�(κ′′)

where κ, κ′ and κ′′ are the normalized-like cumulants
Cum(z,z,z∗,z∗)

(E(|z|2))2 , Cum(z,z,z,z)
(E(z2))2 and Cum(z,z,z,z∗)

E(|z|2)E(z2) respectively.

1Note that the expression
(σ2

x+σ2
y)−
�

(σ2
x+σ2

y)2−4σ2
xσ2

y(1−ρ2
co)

2
of this

distance as a function of the correlation coefficient ρco given by the minimum
eigenvalue ofRw is much involved.

Note that the covariance of the asymptotic distribution of ρT

is a decreasing function of ρ when zt is Gaussian distributed
(κ = κ′ = κ′′ = 0) and vanishes for rectilinear random vari-
ables. Furthermore, using a derotation made by the normali-
zed-like cumulants, the covariance of this empirical estimate
does not depend of the non-circularity phase φ for arbitrary
distributions.

3. MULTIDIMENSIONAL COMPLEX RANDOM
VARIABLE

Consider now a full K-dimensional zero-mean second-order
complex random variable z. The canonical correlations be-
tween z and z∗ i.e., the circularity spectrum of z, are de-
noted by (ρk)k=1,...,K and are arranged in decreasing order
1 = ρ1 = ... = ρr > ρr+1 ≥ ... ≥ ρK ≥ 0. Let

Rz̃
def= E(z̃z̃H) =

(
Rz R

′
z

R
′∗
z R∗

z

)
denote the covariance ma-

trix of the augmented vector z̃ def=
(

z
z∗

)
whereRz is non-

singular, and Rw
def= E(wwT ) =

(
Rx Rx,y

Ry,x Ry

)
, those

of w =
(

x
y

)
. Regarding the rank of these covariance ma-

trices, the following result is proved

Result 4 For a full K-dimensional random variable z, the
rank of the covariance matrices Rz̃ and Rw are equal to
2K − r with r ∈ {0, ..,K}.

ProofAs for the scalar case,Rz̃ andRw are related byRw =
1
2T

HRz̃T where T is the unitary matrix 1√
2

(
I iI
I −iI

)
,

consequently rank(Rz̃) = rank(Rw). Now consider Rz̃ .
From the definition of the coherence matrix2

M = R−1/2
z R′

zR
−T/2
z

associated with z and z̃,Rz̃ may be factored (see e.g., [8]) as

Rz̃ =

(
R1/2

z O
O R∗/2

z

)(
I M

M∗ I

) (
RH/2

z O
O RT/2

z

)
.

SinceM is complex symmetric, there exists a specular singu-
lar value decomposition (SVD), called Takagi’s factorization,
which isM = UΔUT , whereΔ = Diag(ρ1, ..., ρK) andU
is a unitary matrix. Combining this decomposition of M in

2Note that the coherence matrix M depends on the specific square root
R

1/2
z of Rz , unique only if it is imposed to be positive definite Hermitian,

in contrast to the circularity spectrum (ρ1, ..., ρK) which is always unique
[3, th.2].
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the previous expression ofRz̃ , we obtain

Rz̃ =

(
R1/2

z O
O R∗/2

z

) (
U O
O U∗

)(
I Δ
Δ I

)
(

UH O
O UT

) (
RH/2

z O
O RT/2

z

)
(2)

Consequently rank(Rz̃) = rank
(

I Δ
Δ I

)
= rank(I) +

rank(I−ΔI−1Δ) using [12, th.8.5.10] that gives the rank of
a partitioned matrix. So rank(Rz̃) = K + rank(I − Δ2) =
K + (K − r).

Regarding the maximum of the circularity spectrum, the
following equivalence is proved

Result 5 The circularity spectrum is maximum, i.e., ρ1 =
ρ2 = ... = ρK = 1 if and only if (i) rank(Rz̃) = K
(i.e., z̃ belongs to a K-dimensional subspace of C2K), (ii)
rank(Rw) = K (i.e., w belongs to a K-dimensional sub-
space of R2K), (iii) there exists a square root R1/2

z of Rz

such that R′
z = R1/2

z R∗/2
z , (iv) there exists square roots

R1/2
x andR1/2

y ofRx andRy respectively, such thatRx,y =
R1/2

x R1/2
y .

Proof The equivalences (i) and (ii) are a direct consequence
of rank(Rz̃) = rank(Rw) = K + rank(I − Δ2). If the
circularity spectrum is maximum, Δ = I and (iii) follows
because (2) implies R′

z = R1/2
z UUT RT/2

z where R1/2
z U is

a square root ofRz . Conversely, (iii) implies that

Rz̃ =

(
R1/2

z

R∗/2
z

) (
R1/2

z R∗/2
z

)
which involves that rank(Rz̃) = K and the circularity spec-
trum is maximum. Equivalence (iv) follows the same lines
that equivalence (iii) by considering the canonical correla-
tions associated with x and y and equivalence (ii).
By analogy with the scalar case, we propose to call rec-

tilinear such complex multidimensional random variables z
whose circularity spectrum is maximum. Note that if the com-
ponents (z1, ...., zK) of z are all rectilinear, there areK linear
relations yk = tan(φzk

)xk, (k = 1, ..,K) between the com-
ponents ofw, consequently rank(Rw) = K and z is rectilin-
ear3. But the converse is not true: if z is rectilinear, its compo-
nents (zk)k=1,..,K need not have maximum non-circular rates
ρzk
. For example, let z = (z1, z2)T where z1 is circular and

z2 = x2 + iy2 with x2 = ax1 and y2 = ay1. z is recti-
linear because w belongs to a 2-dimensional subspace of R4

but the non-circularity rates of z1 and z2 are ρz1 = 0 and
ρz2 = |a2−1|

a2+1 with ρz2 = 0 for a = 1.

3Note that the components (zk)k=1,..,K of z do not need to be uncorre-
lated as it is usually assumed in DOA estimation of non-circular sources (see
e.g. [6, 7]).

To extend to the multidimensional case, the non-circularity
phase φ defined in the scalar case by (1), we propose a defin-
ition based on the K-dimensional orthogonal regression sub-
space of (x1, ..., xK , y1, ..., yK) which is the support of w
for a maximum circularity spectrum. The canonical angles
(φ1, φ2, .., φK2) between this subspace and each of theK hy-
perspaces (yk = 0)k=1,...,K of R2K satisfy this aim. How-
ever, two questions remain open. First, does one extend the
expression of the mean square orthogonal distance to thisK-
dimensional orthogonal regression subspace given in Result
2? Second, does one prove that the parameter (ρ, φ,Rz) with
φ

def= (φ1, φ2, .., φK2)T makes up a one to one parametriza-
tion of (Rz,R′

z)?
Now, let us consider the estimation of the circularity spec-

trum ρ = (ρ1, ρ2, ..., ρK)T from T independent identically
distributed realizations (zt)t=1,..,T for which the following
result is proved in [14] using the same steps that for Result 3.

Result 6 When zt is Gaussian distributed, the ML estimate
ρT of ρ is given by the vector containing theK singular val-
ues of the empirical coherence matrix

MT = R−1/2
z,T R′

z,T R−T/2
z,T

where Rz,T
def= 1

T

∑T
t=1 ztzH

t and R′
z,T

def= 1
T

∑T
t=1 ztzT

t .
Furthermore, when zt is arbitrarily distributed and when the
circularity spectrum ρ has distinct elements, the sequence√

T (ρT−ρ) converges in distribution to a zero-mean Gaussian
distribution that extends Result 3, whose covariance is speci-
fied in [14].

A. APPENDIX: PROOF OF RESULT 3

When zt is Gaussian distributed, the log-likelihood function
associated with (zt)t=1,..,T can be classically written after
dropping the constants as

L(ρ, φ, σ2
z) = −T

2
(
ln[Det(Rz̃)] + Tr(R−1

z̃ Rz̃,T )
)

(3)

with Rz̃,T
def= 1

T

∑T
t=1 z̃tz̃H

t where the parameter (ρ, φ, σ2
z)

is embedded in the covariance matrixRz̃ . Due to the structure[
(×) (
)
(
)∗ (×)∗

]
of Rz̃ the ML estimation of Rz̃ becomes a

constrained optimization problem which is not standard. But
maximizing the log-likelihood (3) without any constraint on
the Hermitian matrix Rz̃ reduces to a standard maximization
problem, whose solution isRz̃,T . Because

Rz̃,T =

[
1
T

∑T
t=1 |z2

t | 1
T

∑T
t=1 z2

t
1
T

∑T
t=1 z∗t

2 1
T

∑T
t=1 |z2

t |

]

is also structured as
[

(×) (
)
(
)∗ (×)∗

]
, Rz̃,T is the ML esti-

mate ofRz̃ . Using the invariance property of the ML estimate
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implies that the ML estimate of (ρ, φ) is given by(
|∑T

t=1 z2
t |∑T

t=1 |z2
t |

,
1
2
Arg(

∑T
t=1 z2

t∑T
t=1 |z2

t |
)

)
.

Deriving the asymptotic distribution of the empirical esti-
mate ρT when zt is arbitrarily distributed, relies on the stan-
dard central limit theorem4 applied to the independent iden-
tically distributed bidimensional complex random variables(

rz,T

r′z,T

)
with rz,T = 1

T

∑T
t=1 |z2

t | and r′z,T = 1
T

∑T
t=1 z2

t :

√
T

(
rz,T − rz

r′z,T − r′z

)
L→ NC

((
0
0

)
,

(
cr cr,r′

cr′,r cr′

)
,

(
c′r c′r,r′

c′r′,r c′r′

))
,

where rz = E|z2
t | = σ2

z and r′z = E(z2
t ) = ρσ2

zei2φ. Using
the identity

E(z1z2z3z4) = Cum(z1, z2, z3, z4)
+ E(z1z2)E(z3z4) + E(z1z3)E(z2z4) + E(z1z4)E(z2z3),

we obtain(
cr cr,r′

cr′,r cr′

)
= σ4

z

(
1 + ρ2 + κ ρe−i2φ(2 + κ′′∗)

ρei2φ(2 + κ′′) 2 + κ

)
(

c′r c′r,r′

c′r′,r c′r′

)
= σ4

z

(
1 + ρ2 + κ ρei2φ(2 + κ′′)

ρei2φ(2 + κ′′) ρ2ei4φ(2 + κ′)

)
.

Then, considering the following mappings

(rz,T , r′z,T ) �−→ mT =
r′z,T

rz,T
�−→ ρT =

√
mT m∗

T ,

with their associated differentials

dm = − r′

r2
dr+

1
r

dr′ and dρ =
1
2ρ

(m∗dm + mdm∗) ,

the standard theorem of continuity (see e.g., [13, p. 122])
on regular functions of asymptotically Gaussian statistics ap-
plies. Consequently, we have withm = r′

z

rz
= ρei2φ

√
T (mT − m) L→ NC(0, cm, c′m),

where

cm =
(

− r′
z

r2
z

1
rz

) (
cr cr,r′

cr′,r cr′

) (
− r′∗

z

r2
z

1
rz

)
,

c′m =
(

− r′
z

r2
z

1
rz

) (
c′r c′r,r′

c′r′,r c′r′

) (
− r′

z

r2
z

1
rz

)

4NR(m,C) andNC(m,C,C′) denote Gaussian real and complex dis-
tribution with mean, covariance and complementary covariance are m, C
andC′ respectively.

and √
T (ρT − ρ) L→ NR(0, cρ),

where cρ = 1
4ρ2

(
m∗ m

) (
cm c′m
c′m

∗
cm

∗

)(
m
m∗

)
=

1
2 (cm + �(c′me−4iφ)). Result 3 follows thanks to simple
algebraic manipulations of cρ.

B. REFERENCES

[1] P.J. Schreier and L. Scharf, ”Second-order Analysis of im-
proper complex random vectors and processes,” IEEE Trans.
on Signal Processing, vol. 51, no. 3, pp. 714-725, March 2003.

[2] B. Picinbono, ”Second-order complex random vectors and
normal distributions,” IEEE Trans. on Signal Processing, vol.
44, no. 10, pp. 2637-2640, October 1996.

[3] J. Eriksson and V. Koivunen, ”Complex random vectors and
ICA models: identifiability, uniqueness, and separability,”
IEEE Trans. on Information Theory, vol. 52 no. 3, pp. 1017-
1029, March 2006.

[4] H. Abeida and J.P. Delmas, ”MUSIC-like estimation of direc-
tion of arrival for non-circular sources,” IEEE Trans. on Signal
Processing, vol. 54, no. 7, pp. 2678-2690, July 2006.

[5] P.J. Schreier, L. Scharf and C.T. Mullis, ”Detection and esti-
mation of improper complex random signals,” IEEE Trans. on
Information Theory, vol. 51, no. 1, pp. 306-312, January 2005.
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