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ABSTRACT
Stochastic Resonance (SR) is a phenomenon long investi-

gated by physicists that has recently attracted some interest

in the signal processing literature. In this paper, we explore

the potential benefits of the SR effect for shift-in-mean de-

tection problems, specifically focusing on sequential decision

rules. Amenable formulas for the optimal distribution of

the SR noise, as well as an asymptotic comparison with the

traditional Neyman-Pearson approach are obtained.

Index Terms— Stochastic Resonance, Sequential Detec-

tion.

1. INTRODUCTION AND MOTIVATION

Roughly speaking, Stochastic Resonance (SR) basically

arises when, by injecting noise at the input of a (nonlin-

ear) device, an increase of the signal-to-noise ratio at the

corresponding output is observed. The physics literature is

rich with contributions about the subject, since the pioneering

work by Benzi et al. at the beginning of the ’80s [1]. With

no pretence of completeness, we refer the interest reader to,

e.g., [2, 3] as first entry-points.

Even if interesting works on the subject have been pro-

posed to the signal processing community (see, e.g., [4]),

fuller connections with detection theory have been properly

elucidated only recently, starting from the provoking ques-

tion posed by Kay [5], continuing with the analysis in [6],

and culminating into [7], where Chen et al. established a

mathematical theory to deal with the SR effect in the context

of detection.

Motivated by the latter works, in this paper we focus on a

binary hypothesis test with the basic novelty of studying the

SR effect in sequential detectors [8], and, as far as we can tell,

this is the first investigation along this direction.

Aside from the theoretical aspects, the proposed strategy

can be useful in several practical scenarios. Just to get a fla-

vor of the possible applications, consider a Wireless Sensor

Network engaged in a detection task. As usual, the nodes

are severely constrained in terms of energy, computational ca-

pacity, etc., and are accordingly forced to deliver some non-

linear transformation t(·) of the original observations. A re-

mote fusion center is demanded to implement a sequential test

in order to take the final decision. Can we improve on such

scheme?

Let us allow the sensors to add some random noise to their

own observations, before applying the nonlinearity. Perhaps

surprisingly, this strategy may furnish a positive answer to

the above question about performance improvements as we

are promptly going to illustrate.

The paper is organized as follows. The addressed problem

is formalized and the proposed solution is shown in Sect. 2.

Section 3 is devoted to explore some examples in order to

validate the theoretical analysis. In Sect. 4 we summarize.

2. PROBLEM STATEMENT AND MAIN RESULTS

We consider a shift-in-mean binary hypothesis test in the

form:
H0 : Xi ∼ fX(x + A),
H1 : Xi ∼ fX(x − A),

where i = 1, 2, . . . ,∞, the Xi’s are independent and identi-

cally distributed (iid), and A is a known location parameter.

The probability density function (pdf) fX(x) is assumed to be

an even function, i.e., fX(x) = fX(−x). The corresponding

Cumulative Distribution Function (CDF) will be denoted by

FX(x).
Inspired by the SR effect already studied in similar prob-

lems, we contaminate the observations with some additive

noise, that is, for i = 1, 2, . . . ,∞, we let Yi = Xi + Wi,

where the Wi’s are iid and further independent of all the Xi’s.

Again, we consider even symmetry: fW (w) = fW (−w).
Since fY (y) = fX(x) ∗ fW (w), it is immediate to recast

the test as
H0 : Yi ∼ fY (y + A),
H1 : Yi ∼ fY (y − A), (1)

where it is not difficult to recognize that, again, fY (y) =
fY (−y).

The basic question posed in this paper is whether a non-

zero Wi exists giving an improvement of the detector perfor-

mances on the scheme operating with uncontaminated data.

In addition, we would like to select the best noise pdf fW as

the one yielding the speedest sequential test.
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To answer the question, let us introduce the form of the

decision statistic to be implemented. Given the sequential na-

ture of the detection procedure, the system is constrained to

employ an additive statistic in the form Tn =
∑n

i=1 t(yi).
In order to meet the regularity conditions needed in the fol-

lowing, and in complying with the problem symmetries, the

nonlinearity t(y) is chosen as a bounded, non-decreasing odd

function. Furthermore, with the aim of simplifying the anal-

ysis since it is actually unnecessary, we fix both the false dis-

missal probability and the false alarm probability of the test

to one and the same value, hereafter denoted by pe.

We are now in the position of defining the sequential de-

cision rule: for n = 1, 2, . . .⎧⎨
⎩

Tn ≥ γ ⇒ decide H1,
Tn ≤ − γ ⇒ decide H0,
otherwise ⇒ continue collecting,

where the choice of symmetric thresholds γ and −γ is obvi-

ous. In the following, we assume the functional form of the

detector fixed, while the threshold can be tuned by the user

as the employed noise pdf fW changes. Depending on the

particular application, it could be also of interest to consider

a threshold independent of the noise distribution, as well as a

variable detector structure.

As standard in sequential analysis [8], the system perfor-

mances are summarized in the error probability pe and the

Average Sample Number (ASN) E[N ] (which by symmetry

is the same under both the hypotheses). In the case that the

decision statistic is just the log-likelihood ratio of the observa-

tions, it is relatively easy to compute approximate analytical

formulas for these two performance figures, see, e.g. [8].

On the other hand, in our scenario, due to the arbitrary

shape of the nonlinearity, we must use a different analysis.

To this aim, we shall resort to some known results about a

random walk with two barriers reported, e.g., in [9]. Work-

ing under H1, and using the large-deviation bound provided

in [9], we get pe ≤ e−γr∗
, where r∗ is the solution of the

equation E
[
et(X+W ) r∗

;H0

]
= 1. This gives a relationship

between the error probability and the threshold.

Switching now to the ASN evaluation, by Wald’s equal-

ity [9] we can write

E[N ] ≈ − log pe

E[t(X + W );H1] r∗
, (2)

where the last formula is obtained by using the above large-

deviation approximation for the error probability, and in the

regime of pe small enough, which we refer to.

By defining the auxiliary functions

h1(w) = EX [t(X+w);H1]; h2(w) = EX [et(X+w) r;H0],
(3)

we have the more compact formulas:

E[N ] ≈ − log pe

EW [h1(W )] r∗
, r∗ : EW [h2(W, r∗)] = 1.

(4)

The best noise pdf fW , namely that yielding the smallest

ASN among all sequential tests with error probability not ex-

ceeding pe, is thus related to the following optimization:

max
fW

{EW [h1(W )] r∗} . (5)

We elaborate on the above in the next section.

Before ending this section, it is of interest to introduce a

way to compare the proposed sequential strategy with a tradi-

tional Neyman-Pearson (NP) test. While it is well known that

the (average) sample number required by the optimal Wald’s

SPRT is, for the same error probabilities, smaller than that

required by the (fixed-sample-size) Neyman-Pearson test, the

result of a comparison between a suboptimal sequential strat-

egy and the optimal NP test is not clear in advance. To sum-

marize the relative merits of a sequential detector with respect

to a NP detector, a classical choice is to work in terms of the

asymptotic relative efficiency defined as [10]

ARE = lim
pe→0

lim
A→0

E[N ]
Nf

, (6)

where Nf is the number of samples of the NP test. By work-

ing in the limit of vanishing A, the central limit theorem

allows approximating the pertinent sample number Nf as[
Q−1(pe)

]2
A/If , see [11], where Q(·) is the unit Gaussian

exceedance function, and If is the Fisher information for lo-

cation [11]. Depending on the particular scenario considered,

one has to substitute the pertinent expression for E[N ] in

eq. (6), and compute

ARE = lim
pe→0

lim
A→0

E[N ] IfA2

[Q−1(pe)]2
. (7)

3. APPLICATIONS

As a possible example of application, we consider the sign

nonlinearity t(x) = sign(x), which was subject to consider-

able attention in earlier works about the stochastic resonance,

see, e.g., [5]. To carry out the optimization in (5), we now

evaluate the functions h1(w) and h2(w, r) in eq. (3). By def-

inition we obviously get h1(w) = 2FX(A + w)− 1, yielding

EW [h1(W )] = 2p − 1, where p = Pr[X + W > 0;H1] =
EW [FX(A + W )]. On the other hand, it is straightforward to

compute EW [h2(W, r)] = er − 2p sinh(r), whence, solving

the second of eq. (4) yields r∗ = log p
1−p . Thus, the optimiza-

tion problem (5) amounts to the maximization of

EW [h1(W )] r∗ = (2p − 1) log
p

1 − p
. (8)

The above is an increasing function of p, revealing that we

have simply to find the fW (w) maximizing p. To this aim,

let us observe that, thanks to the symmetry of fW (w), we can

rewrite

p =
∫ ∞

0

[FX(A − w) + FX(A + w)]fW (w)dw. (9)
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Fig. 1. Pictorial sketch of the optimization for the sign de-

tector. According to eq. (11), the shifted versions of the pdf

fX(·) are depicted, and the optimal solution w0,opt is shown

at the intersection between the two curves.

Under regularity conditions (essentially FX(x) must be con-

tinuously differentiable), by the mean-value theorem it is im-

mediate to recognize that, for a fixed fW (w), there always

exists a value w0 ≥ 0 such that

p =
1
2
[FX(A − w0) + FX(A + w0)] := p(w0), (10)

and the optimal solution w0 = w0,opt obeys1

p′(w0) = 0 ⇐⇒ fX(A + w0) = fX(A − w0). (11)

Remarkably, the above analysis also tells that the optimum

noise pdf can be chosen in the class of the coin flipping distri-

bution of strength w0

fW (w) =
1
2
[δ(w − w0) + δ(w + w0)], (12)

where δ(·) is the Dirac delta. The relevant implication is

that the optimal SR solution amounts to adding or subtract-

ing, choosing which of these completely at random, a certain

deterministic value w0,opt to the system input.

It is also of interest to compute the ARE for the described

sequential sign detector in the presence of the stochastic res-

onance effect. Let us first observe that, for each value of A, a

different injected noise w(A) = w0,opt is obtained, and thus

the explicit expression of p in eq. (10) gives:

1
2
[FX(A − w(A)) + FX(A + w(A))] := ψ(A). (13)

Using eq. (8), the ASN can be written as E[N ] = − log pe

g(A) ,

where we define g(A) := (2ψ(A)−1) log ψ(A)
1−ψ(A) . According

to eq. (15), the ARE is thus given by

ARE =
If

2
lim
A→0

A2

g(A)
=

If

g′′(0)
, (14)

1Of course, also the sign of the second derivative should be checked.
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Fig. 2. ASN of the proposed sequential strategy for the sign

nonlinearity, as a function of the noise level w0. The relevant

parameters are pe = 10−2, A = 1 and μ = 5. Simulation

points are obtained by 104 Monte Carlo trials.

where we used the fact that limpe→0 log pe/[Q−1(pe)]2 =
−1/2 and it is implicitly assumed that g(A) can be Taylor

expanded around A = 0, with g′(0) = 0. By simply us-

ing the definition of w(A) in eq. (13), it is straightforward to

compute g′′(0) = 16[fX(w(0))]2. A further simplification is

obtained by noting that fX(w(0)) is just a peak2 of fX(x).
The performances in the absence of stochastic resonance can

be derived in a similar way. Summarizing:

ARE =
If

16[max fX(x)]2
, AREnoSR =

If

16[fX(0)]2
.

(15)

We are now ready to explore the potential benefits of the

stochastic resonance effect. Following the same line of previ-

ous works (see, e.g., [7]), let us consider a Gaussian mixture

fX(x) = 1
2 [N (x;μ/2) + N (x;−μ/2)] , where N (x; a) is

our shortcut for a Gaussian pdf of argument x, with mean a
and unit variance. It could be useful to get a pictorial inter-

pretation of eq. (11) for this specific pdf. This is provided

in Fig. 1, where it is emphasized that the optimal solution re-

quires looking for a symmetry of the pdf fX(·) with respect to

the value A. Clearly, a solution is here achieved thanks to the

peaks of the bimodal pdf fX(·), depending on the parameters

A and μ.

Let us now focus on the performances of the presented

strategy. Accordingly, in Fig. 2 we display the ASN needed

for reaching a decision with an error probability pe = 10−2,

as a function of the injected noise strength w0: an optimal

value w0,opt exists that minimizes the ASN, and the SR

clearly arises. The theoretical values of the ASN predicted by

the first of eq. (4) are also compared with the results of 104

Monte Carlo simulations. Note the good match between the

2In fact, by rewriting, thanks to the even symmetry of fX , eq. (11) as

fX(A+w(A)) = fX(w(A)−A), and simply taking the first derivative of

both sides thereof, we get f ′
X(w(0)) = 0.
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Fig. 3. Asymptotic relative efficiencies (15) of the proposed

detectors, with and without the SR effect, displayed vs. the

Gaussian mixture parameter μ.

simulated ASN and the values dictated by the theory. In addi-

tion, it has been checked that the error probabilities estimated

via simulation are close to the large-deviation bound.

Before concluding, let us examine the asymptotic relative

efficiencies obtained for this example. First, consider μ = 0,

so that the problem is purely Gaussian. In this case If = 1,

and w(A) = 0 ∀A, yielding ARE = AREnoSR = π/8 < 1,

as is known from [10]. It is worth noting that, since ARE < 1,

the optimal NP detector is here outperformed by the sequen-

tial sign test. On the other hand, for μ → ∞, it can be veri-

fied that If ≈ 1, and max fX(x) ≈ 1
2
√

2π
, yielding ARE =

π
2 > 1, which reveals that, as μ → ∞, the optimal NP test

outperforms the SR sequential detector. These two opposite

tendencies stimulate a deeper analysis of the ARE behavior as

a function of the parameter μ, as shown in fig. 3, where three

different regimes can be identified. For μ ≤ 2 there is no

room for stochastic resonance. Indeed, in that region it can be

shown that the pdf fX(x) is still unimodal. Furthermore, note

that the sequential detection is advantageous, being ARE < 1.

For μ > 2, and up to μ ≈ 3.5, the SR effect gives ben-

efits with respect to the NP test (ARE < 1), and to the plain

sequential detector (ARE < AREnoSR). Inside this interval,

for values greater than μ ≈ 2.5, the ARE of the SR detector

is less than unity and that of the sequential detector in the ab-

sence of stochastic resonance is not. Beyond μ ≈ 3.5, the SR

sequential detector is worse than the NP one, and the maxi-

mum ARE is found to be π/2. However, orders of magnitude

are gained with respect to the absence of stochastic resonance

as μ grows.

4. CONCLUSIONS

We investigated the SR effect in the context of sequential de-

tection, for shift-in-mean binary detection problems and as-

suming some symmetries which can be reasonably encoun-

tered in practical problems. The optimal injected noise distri-

bution is characterized in terms of the closed-form optimiza-

tion problem formalized in (5).

As an example, the sequential sign detector is considered:

The system optimization is carried out in its full generality

and the best enhancing noise is shown to be a coin flipping of

appropriate strength w0,opt. The comparison between the pro-

posed sequential strategy and the optimal Neyman-Pearson

fixed test is also addressed, in terms of asymptotic relative

efficiency. The analysis emphasizes that there exist situations

where the combined effect of the stochastic resonance and the

sequential detection yields some gain, even with respect to the

optimal NP test.
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