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ABSTRACT
We present an algorithm to find near-optimal “stochastic reso-
nance” (SR) noise benefits for Neyman-Pearson (N-P) hypoth-
esis testing or signal-detection problems. The optimal N-P SR
noise is no more than two randomized noise realizations when
the optimal noise exists. We give necessary and sufficient con-
ditions for the existence of such optimal noise in fixed detec-
tors. There exists a sequence of noise variables whose detec-
tion performance limit is optimal when such noise does not
exist. An upper bound limits the number of iterations that the
algorithm requires to find such near-optimal noise.

Index Terms— optimal noise, stochastic resonance, sig-
nal detection, Neyman-Pearson test, noise-finding algorithm

1. INTRODUCTION
Stochastic resonance (SR) occurs when noise benefits a non-
linear system [2, 6, 13]. The noise benefit can take many forms
such as an increase in a bit count, a signal-to-noise ratio, a
cross-correlation, or a decrease in a probability of error, or
an increase in detection probability for a preset level of false-
alarm probability [3, 4, 5, 7, 8, 9, 10, 14]. SR applications
range from neural processing to physical devices and often in-
volve some form of nonlinear signal detection. We focus here
on the special case of SR in signal detection that uses Neyman-
Pearson (N-P) hypothesis testing to decide between two sim-
ple alternatives. We define the noise as N-P SR noise if adding
such noise increases the signal detection probability PD while
the false-alarm probability PFA stays at or below a preset level
α for fixed detection strategy.

We present three main SR results for Neyman-Pearson sig-
nal detection. The results do not require that the user knows
the prior probabilities of the competing hypotheses as in Baye-
sian signal detection. The first SR result is that the existence
of N-P SR noise does not itself imply the existence of optimal
N-P SR noise. We state necessary and sufficient conditions
for the existence of optimal N-P SR noise. There exists a se-
quence of noise variables whose detection performance limit
is optimal when the optimal N-P SR noise does not exist. The
second SR result is a sufficient condition to detect N-P SR
noise benefits in simple threshold signal detection. The third
SR result is an algorithm that finds near-optimal N-P SR noise

from a finite set Ñ of noise realizations. This noise is nearly

optimal if the detection and false alarm probabilities in Ñ and

in the actual noise spaceN ⊃ Ñ are sufficiently close. Figure
1 shows how noise can improve N-P detection performance if
the detector’s receiver operating characteristic (ROC) curve is
not concave.

These SR results extend and correct prior work in “de-
tector randomization” or adding noise in N-P signal detec-
tion. Tsitsiklis [12] explored the mechanism of detection-
strategy randomization for a finite set of detection strategies

(operating points) in decentralized detection. He first showed
that there exists a randomized detection strategy that uses a
proper convex or random combination of at most two exist-
ing detection strategies and that gives the optimal N-P detec-
tion performance. Such optimal detection strategies lie on the
upper boundary of the convex hull of the ROC-curve oper-
ating points. Scott et al. [11] and Appadwedula et al. [1]
later used the same optimization principle in classification sys-
tems and energy-efficient detection in sensor networks respec-
tively. Then Chen et al. [3] used a fixed detector structure.
They injected noise in the data samples to obtain a proper ran-
dom combination of operating points on the ROC curve. They
showed that the optimal N-P SR noise for fixed detectors is a
proper randomization of no more than two noise realizations.

But Chen et al. [3] assumed that the convex hull V of the
set of ROC curve operating points U ⊆ R2 always contains
its boundary ∂V and thus that the convex hull V is closed.
This is not true in general. The topological problem is that
the convex hull V need not be closed if U is not compact:
the convex hull of U is open if U itself is open. Chen et al.
argued correctly along the lines of the proof of Theorem 3 in
[3] when they concluded that the “optimum pair can only exist
on the boundary.” But their later claim that “each z on the
boundary can be expressed as the convex combination of only
two elements of U” is not true in general because V may not
include all of its boundary points. The optimal N-P SR noise
need not exist at all in a fixed detector. Figure 1 shows a case
where the N-P SR noise exists but the optimal N-P SR noise
does not exist in the noise space N = R. We show below that
if we restrict the noise space to the compact interval [−5, 5]
then the optimal SR noise does exist. Our algorithm finds a
nearly optimal N-P SR noise from a discretized set of noise

realizations Ñ = [-5:0.0001:5] in just 9 iterations.
The next three sections present and illustrate these SR

noise benefits. The first section presents the formal Neyman-
Pearson framework and gives necessary and sufficient con-
ditions for the existence of optimal N-P SR noise and gives
the exact form of the optimal noise probability density (pdf)
in the noise domain Rm if such noise exists. The second
section presents the algorithm for finding the N-P SR noise

from a finite set of noise realizations Ñ . The final section
presents a detailed example of how these SR results can im-
prove Neyman-Pearson signal detection by deliberately but
judiciously adding noise.

2. OPTIMAL NOISE PDFS FOR N-P DETECTION
Consider a binary hypothesis test where we decide between
H0 : fX(x, H0) = f0(x) and H1 : fX(x, H1) = f1(x) using an
m-dimensional noisy observation vector Y = X+N. Here X ∈
Rm is the original observation data vector, N ∈ N ⊆ Rm is a
noise vector with pdf fN , andN is the noise space. We assume
that the noise N is independent of X. The noise vector N can
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Fig. 1. SR noise benefits in N-P signal detection. (a) The thin solid line shows the probability density function (pdf) f0 of signal X under

the normal hypothesis H0: X ∼ N(0, 1) while the dashed line shows the pdf f1 of X under the alternative normal hypothesis H1: X ∼
N(0, 4). The detector rejects H0 if the noisy observation X + N > θ. The thick vertical solid line shows the threshold θ. (b) The solid line

shows the monotonic but nonconcave ROC curve U = {(pFA(n), pD(n)): n ∈ R} of the detector where n is the realization of the additive

noise N in X , pFA(n) = 1-Φ(θ-n), and pD(n) = 1-Φ( θ−n
2

) for standard normal cumulative distribution function Φ. The detector operates at

point a = (pFA(0), pD(0)) = (0.4, 0.4496) on the ROC curve in the absence of noise. Nonconcavity of the ROC curve U between the points

b = (pFA(n1), pD(n1)) and c = (1,1) allows the N-P SR effect to occur. A proper convex or random combination of two operating points b
and e = (pFA(n2), pD(n2)) gives a better detection performance (point f ) than point a at the same false-alarm level pFA(0) = α = 0.4. Such a

random combination of operating points results from adding a discrete noise N with pdf fN (n) = λδ(n−n1) + (1−λ)δ(n−n2) to the data

sample X where λ = (pFA(n2)-α)/(pFA(n2)-pFA(n1)). Point d is on the upper boundary ∂V of the ROC curve’s convex hull (dashed tangent

line between b and c). So d is the supremum of detection performances that random or convex combination of operating points on the ROC

can achieve so that α remains 0.4. Note that d is the convex combination of b and c but it is not realizable by adding only noise in the data

sample X because point c = (1,1) is not on the ROC curve since there is no noise realization n ∈ R such that 1-Φ(θ-n) = 1 = 1-Φ( θ−n
2

)).

Thus the optimal N-P SR noise does not exist in the noise spaceN = R.

be random or even a deterministic constant such as fN(n) =
δ(n − no). Here f0 and f1 are the pdfs of the observation X
under the hypothesis H0 and H1. We assume that we do not
know the prior probabilities P (Hi) of the hypotheses Hi. Let
0 ≤ φ(T (Y)) ≤ 1 be a critical (or test) function that decides
between H0 and H1 using a test statistic T (Y). Then the
test chooses the hypothesis H1 with probability φ(T (Y)) for
any observation x. Else it chooses the hypothesis H1 with
probability 1 − φ(T (Y)). We want to find the conditions
for the existence of the optimal additive noise Nopt that gives
the best achievable detection performance without sacrificing
the test significance level α for the given fixed test function φ.

Define PD(n) and PFA(n) as the respective probabilities of
detection and false detection (alarm) when the noise realiza-
tion is n. Define PD(fN) =

∫
N PD(n)fN(n)dn and PFA(fN) =∫

N PFA(n)fN(n)dn as the respective probabilities of detection
and false detection when the noise pdf is fN . Let fNopt

be the pdf
of the optimal SR noise Nopt that we add to the observed data
X to maximize the probability of detection PD when keeping
PFA ≤ α. So we need to find

fNopt
= arg max

fN

∫
NPD(n)fN(n)dn (1)

such that

fNopt
(n) ≥ 0 for all n, (2)

∫
N fNopt

(n)dn = 1, and (3)

PFA(fNopt
) =

∫
NPFA(n)fNopt

(n)dn ≤ α. (4)

Conditions (2) and (3) are defining properties of the pdf while
(1) and (4) state the Neyman-Pearson criterion for the optimal
SR noise pdf fNopt

.

The next two theorems give necessary and sufficient con-
ditions for the existence of the optimal N-P SR noise and the
form of its pdf if it exists. We need the following definitions
for Theorems 1 and 2. Define first the sets

D+ = {n ∈ N : (PFA(n)− α) ≥ 0} and (5)

D− = {n ∈ N : (PFA(n)− α) ≤ 0} . (6)

Assume D− �= ∅ to avoid a trivial nonexistence of Nopt. Let
PD+

sup
, PD−sup

, and PDsup be the respective supremum of

PD(n) over the sets D+, D−, and N . Next define a function

g(n, k) = PD(n)− k (PFA(n)− α) (7)

and let d+(k), d−(k), and d(k) be its respective supremum
over the sets D+, D−, and N . Finally let

G+ = {n ∈ D+ : PD(n) = PD+
sup
} and (8)

G− = {n ∈ D− : PD(n) = PD−sup
}. (9)
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Theorem 1: (a) Suppose that PD−sup
≥ PD+

sup
. If G− is

nonempty then

fNopt
(n) = δ(n− no) (10)

for some no ∈ G− is an optimal SR noise pdf for Neyman-
Pearson detection and PFA(fNopt

) ≤ α. If G− is empty then the
Neyman-Pearson optimal SR noise does not exist for the given
test level α. But there exists a noise pdf sequence {fNr}∞r=1 of
the form (10) such that

lim
r→∞PD(fNr ) = PDsup (11)

(b) Suppose that PD−sup
< PD+

sup
. If the Neyman-Pearson

optimal SR noise pdf fNopt
(n) exists then PFA(fNopt

) = α.

Theorem 1 (a) gives the optimal N-P SR noise pdf fNopt
if

it exists and if PD−sup
≥ PD+

sup
. Theorem 2 gives neces-

sary and sufficient conditions for the existence of fNopt
when

PD−sup
< PD+

sup
.

Theorem 2: Suppose that PD−sup
< PD+

sup
.

(a) There exists k∗ ∈R such that d+(k∗) = d−(k∗) = d(k∗)
and min{d+(k), d−(k)} ≤ d(k∗) ≤ max{d+(k), d−(k)} for
any k ∈R.

(b) Suppose noise pdf fN satisfies PD(fN) = d(k∗) > PD(0) and
PFA(fN) = α. Then fN is a Neyman-Pearson optimal noise pdf.
So the optimal N-P SR detection probability PDopt

is d(k∗).
(c) Suppose that there exist n1 ∈ D− and n2 ∈ D+ such that
g(n1, k

∗) = d−(k∗) = d(k∗) = g(n2, k
∗) = d+(k∗). Then

fNopt
(n) = λδ(n− n1) + (1− λ)δ(n− n2) (12)

with λ =
PFA(n2)− α

PFA(n2)− PFA(n1)
(13)

is the optimal Neyman-Pearson SR noise pdf if d(k∗) > PD(0).

(d) Neyman-Pearson optimal SR noise does not exist if con-
dition (c) does not hold. But there exists a noise pdf sequence
{fNr}∞r=1 of the form (12)-(13) such that

lim
r→∞PD(fNr ) = d(k∗) (14)

Theorem 3 below gives a sufficient condition to detect
an N-P SR noise benefit in detectors that use a single noisy
observation Y ∈R to decide between H0 and H1.

Theorem 3: Suppose that the PD and PFA of a detector are
second-order continuously differentiable in R and PFA(0) = α.
Suppose also that PFA is not locally minimum at 0 and PD is
not locally maximum at 0. Then an N-P SR noise exists if

P ′′D (0)P ′FA(0) > P ′′FA(0)P ′D(0). (15)

Theorem 3 implies a following Corollary that gives a suf-
ficient condition to detect an N-P SR noise benefit in threshold
detectors that use a single noisy observation Y ∈R.

Corollary: Suppose that a set of thresholds Θ = {θ1, ..., θk}
partitions the real line R into acceptance and rejection regions.
Suppose also that the hypothesized pdfs fi are continuously
differentiable in R. Define s(j) = 1 if θj is a left endpoint of
any rejection interval. Else let s(j) = -1. Then a proper additive
noise can improve the N-P detection of such a detector if(∑

j s(j)f ′0(θj)
) (∑

j f1(θj)
)

>
(∑

j s(j)f ′1(θj)
)(∑

j f0(θj)
)

.

3. N-P SR NOISE FINDING ALGORITHM
Theorem 1 and 2 give the exact form of the optimal N-P SR
noise pdf but such noise may not be easy to find in a given
noise space N . So we present an algorithm based on succes-
sive approximations that can find the N-P SR noise from a

finite set of noise realizations Ñ ⊆ N . The algorithm takes

as input ε, α, Ñ (in (5)-(9)), and the respective detection

and false alarm probabilities PD and PFA on Ñ . The algo-
rithm first searches for a constant noise from the set G− if
PD−sup

≥ PD+
sup

. If the inequality does not hold then the

algorithm finds a number k(i) at every iteration i such that

|d−(k(i))−d(k∗)|≤ 2−i+1 which gives |d+(k(i))− d−(k(i))|
< ε in at most imax = 	log2 (2/ε)
+1 iterations. The algorithm

then defines a noise Ñ ′ as a proper random combination of
ñ1 ∈ D− and ñ2 ∈ D+ so that g(ñ1, k(imax)) = d−(k(imax)),
g(ñ2, k(imax)) = d+(k(imax)), and PFA(fÑ′) = α. Theorem 4(a)

shows that if Ñopt is the optimal N-P SR noise in Ñ and if fÑopt

is the pdf of Ñopt then 0 ≤ PD(fÑopt
)−PD(fÑ′) ≤ ε.

N-P SR Noise Finding Algorithm
If P

D−sup
≥ PD+

sup

fÑopt
(n) = δ(n− ñ0) for any ñ0 ∈ G−

Else

Let k(0) = 1, i = 2, and Find k(1): d-(k(1)) = [d-(k(0)) + d+(k(0))]/2

For |d−(k(i-1))− d+(k(i-1))| > ε and i≤ 	log2 (2/ε)

Let r = sgn[d−(k(i-1))− d−(k(i-2))] and Find k(i) so that

d−(k(i)) = [d−(k(i-1)) + r max{rd−(k(i-2)), rd+(k(i-1))}]/2
i = i + 1

End For

If |d+(k(i-1))− d−(k(i-1))| > ε

Find k(i): d+(k(i)) = d−(k(i-1)) + sgn[d+(k(i-1))− d−(k(i-1))]ε
Else

k(i) = k(i-1)

End If

fÑ′ (n) = λδ(n− ñ1) + (1− λ)δ(n− ñ2) where

ñ1 ∈ D− so that PD(ñ1)− k(i)(PFA(ñ1)− α) = d−(k(i)),

ñ2 ∈ D+ so that PD(ñ2)− k(i)(PFA(ñ2)− α) = d+(k(i)),

and λ =
PF A(ñ2)−α

PF A(ñ2)−PF A(ñ1)
.

End If

Theorem 4(b) shows that if for each n ∈ N there exists ñ ∈
Ñ so that |PD(n)− PD(ñ)| ≤ τ and (16)

PFA(ñ) ≤ PFA(n) (17)

and if Nopt is the optimal N-P SR noise in N with fNopt
as its

pdf then 0≤ PD(fNopt
)−PD(fÑ′)≤ (τ +ε). Thus the algorithm

will find a near-optimal noise Ñ ′ for any small ε if we choose

Ñ such that τ is sufficiently small.

Theorem 4:
(a) For every ε > 0 the above algorithm finds an N-P SR noise

Ñ ′ from Ñ in at most imax = 	log2 (2/ε)
+1 iterations so that
PD(fÑopt

) ≥ PD(fÑ′) ≥ PD(fÑopt
)− ε and (18)

PFA(fÑ′) ≤ α. (19)

(b) If Ñ satisfies (16)-(17) then the detection performance

with noise Ñ ′ is at most τ+ε less than the optimal SR detection
with noise Nopt: PD(fNopt

) ≥ PD(fÑ′) ≥ PD(fNopt
)− (τ + ε).
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4. APPLICATION OF SR NOISE ALGORITHM
Consider a hypothesis test for the variance between two zero-

mean Gaussian distributions H0: f0(x) = 1√
2π

e
x2
2 vs. H1:

f1(x) = 1√
2π2

e
x2

2(2)2 where we want to decide between H0 and

H1 using only a single observation of X at the significance
α = 0.4. Figure 1(a) shows both f0 and f1. Note that the
optimal N-P test function at level α is a chi-square test that
rejects H0 if X2 > χ2

α(1) because X2 is a chi-square random
variable with 1 degree of freedom. If the detection system uses
only X (neither |X| nor X2) then it requires two thresholds

−√
χ2

α(1) and
√

χ2
α(1) for the optimal decision making.

Suppose that the detection system can use only one thresh-
old θ due to resource limits or some design constraint. If we

reject H0 when X > θ then PD(n) = 1-Φ( θ−n
2 ) and PFA(n)

= 1-Φ(θ-n) for standard normal cumulative distribution func-

tion Φ(z) =
∫ z

−∞
1√
2π

e−w2/2dw. Suppose we want α = PFA(0)
= 0.4. Then θ = 0.2534 and the noiseless detection probability
PD(0) = 0.4496. Note that PD(n) and PFA(n) are monotonic
increasing on R so that PD−sup

= PD(0) < PD+
sup

= 1. The-
orem 2(d) implies that optimal N-P SR noise does not exist if
the noise space is R. But the condition of Theorem 2(c) does
hold if we we restrict the noise space to a compact interval (say
[-5,5]) because PD(n) and PFA(n) are continuous functions of
n. The hypothesis of the Corollary does not hold at θ = 0.2534
because the ROC curve is not locally convex at point a in Fig-
ure 1(b). But it does hold for all θ < 0 because then the ROC
curve is locally convex for pFA > 0.5.

We apply the algorithm to find near optimal noise in N
= [−5, 5] for ε = 2−20. Consider the discretized set Ñ of
noise realizations starting from -5 up to 5 with an increment

of 0.0001 (Ñ = [-5:0.0001:5]). Such Ñ satisfies (16)-(17) for
τ = 0.00004 because 0.4 bounds f0 and f1. Figure 2 shows
the plots of g(ñ, k(i)) = PD(ñ) - k(i)(PFA(ñ)-α) before the

first iteration (i = 0) and after the 9th iteration (i = 9) where
k(0) = 1. The noise finding algorithm finds a value of k(9) =
0.8098 in just 9 (< imax = 22) iterations such that |d+(k(9)) -
d−(k(9))| < ε = 2−20. Note that g(ñ1,k(9)) = d−(k(9)) at ñ1

= -0.8805 ∈ D− and g(ñ2,k(9)) = d+(k(9)) at ñ2 = 5 ∈ D+.
Then

f
Ñ′(n) = λδ(n+0.8805) + (1-λ)δ(n-5) with (20)

λ = (PFA(5)-0.4)/(PFA(5)-PFA(-0.8805)) = 0.6884 (21)

is the pdf of a near-optimal N-P additive SR noise Ñ ′ because
PD(fÑ′) = 0.5052 while the detection probability PD(fNopt

) for

the optimal N-P SR noise Nopt in N = [−5, 5] will be at most

0.00004 + 2−20 more than PD(fÑ′) by Theorem 4(b). So the
algorithm finds a near-optimal N-P SR noise that gives a 12%
increase in the probability of detection from 0.4496 to 0.5052.
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