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ABSTRACT

We present theoretical results pertaining to the ability of �p min-
imization to recover sparse and compressible signals from incom-
plete and noisy measurements. In particular, we extend the results
of Candès, Romberg and Tao [1] to the p < 1 case. Our results indi-
cate that depending on the restricted isometry constants (see, e.g., [2]
and [3]) and the noise level, �p minimization with certain values of
p < 1 provides better theoretical guarantees in terms of stability and
robustness than �1 minimization does. This is especially true when
the restricted isometry constants are relatively large.

Index Terms— Compressed Sensing, Compressive Sampling,
�p minimization, Sparse Recovery

1. INTRODUCTION
The problem of recovering sparse signals in R

N fromM < N mea-
surements has received a lot of attention lately, especially with the
advent of compressive sensing and related applications, e.g., [4, 5,1,
6]. More precisely, let x ∈ R

N be a sparse vector, let A ∈ R
M×N

be a measurement matrix, and suppose the possibly noisy observa-
tion vector b is given by

b = Ax + e. (1)

where e ∈ R
M denotes the noise. The goal of a sparse recovery

algorithm is to obtain an estimate of x given only b and A. This
problem is non-trivial since A is overcomplete. That is, the lin-
ear system of M equations in (1) is underdetermined, and thus ad-
mits in nitely many solutions among which the correct one must be
chosen. As the original signal x is sparse, the problem of nding
the desired solution can be phrased as some optimization problem
where the objective is to maximize an appropriate measure of spar-
sity while simultaneously satisfying the constraints de ned by (1).
As the sparsity of x is re ected by the number of its non-zero en-
tries, equivalently its so-called �0 norm, in the noise-free case of (1)
one would seek to solve the P0 problem, e.g., [7],

P0 : min
x

‖x‖0 subject to b = Ax. (2)

It can be shown that P0 recovers x exactly if x is suf ciently sparse
depending on the matrix A [7]. However, this optimization prob-
lem is combinatorial in nature, thus its complexity grows extremely
quickly as N becomes much larger than M . Naturally, one then
seeks to modify the optimization problem so that it lends itself to
solution methods that are more tractable than combinatorial search.
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In fact, it has been shown (e.g., [2, 1]) that, in the noise-free setting,
�1 minimization, i.e., solving

P1 : min
x

‖x‖1 subject to b = Ax, (3)

recovers x exactly if ‖x‖0 ≤ S and the matrixA obeys a particular
restricted isometry property, e.g., δ2S+2δ3S < 1. Here δS are the S-
restricted isometry constants ofA, de ned as the smallest constants
satisfying

(1− δS)‖c‖22 ≤ ‖AT c‖22 ≤ (1 + δS)‖c‖22 (4)

for all subsets of columns T with#(T ) ≤ S and any vector c. In the
general setting, [1] provides error guarantees when the underlying
vector is not “exactly” sparse and when the observation is noisy.

Theorem 1 [1] Assume that x is arbitrary, b = Ax and suppose
that δ3S + 3δ4S < 2. Then the solution x

∗ to P ε
1 (see (9)) obeys

‖x∗ − x‖2 ≤ CSε. (5)

For reasonable values of δ4S , the constant C is well behaved; e.g.
C = 8.82 for δ4S = 1/5.

This means that given b, solving P ε
1 recovers the underlying

sparse signal within the noise level (thus, perfectly if ε = 0).

Theorem 2 [1] Assume that x is arbitrary, b = Ax+e, ‖e‖2 < ε
and suppose that δ3S +3δ4S < 2. Then the solution x

∗ to P ε
1 , where

Pε
1: min

x

‖x‖1 subject to ‖b−Ax‖2 ≤ ε, (6)

obeys

‖x∗ − x‖2 ≤ C1,Sε + C2,S
‖x− xS‖1√

S
. (7)

For reasonable values of δ4S , the constants are well behaved; e.g.
C1,S = 8.77 and C2,S = 12.04 for δ4S = 1/5.

More recently, [8] showed that in the noise-free setting, a suf -
ciently sparse signal can be recovered perfectly via �p minimization,
0 < p < 1, under less restrictive isometry conditions than those
needed for �1 minimization.

Theorem 3 [8] Let 0 < p ≤ 1. Assume that x is S-sparse, b =

Ax and suppose that δkS + k
2−p

p δ(k+1)S < k
2−p

p − 1, for some
k > 1. Then the minimizer x∗ to Pp, where

Pp: min
x

‖x‖p subject toAx = b, (8)

is exactly x.
Note that, for example, when p = 0.5 and k = 3, the above

theorem only requires δ3S +27δ4S < 26 to guarantee perfect recon-
struction with �0.5 minimization, a less restrictive condition than the
one needed to guarantee perfect reconstruction by �1 minimization.

In what follows, we present generalizations of the above theo-
rems, giving stability and robustness guarantees for �p minimization.
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These are of the same nature as those provided above for �1 mini-
mization in the general (noisy and non-sparse) setting while being
less restrictive. We also present simulation results, further illustrat-
ing the possible bene ts of using �p minimization.

2. STABLE RECOVERY IN THE PRESENCE OF NOISE
WITH �P MINIMIZATION

In this section, we present our main theoretical results pertaining to
the ability of �p minimization to recover sparse and compressible
signals in presence of noise. To that end, we de ne

P ε
p : min

x

‖x‖p
p subject to ‖b−Ax‖2 ≤ ε. (9)

Theorem 4 (Sparse Case) Assume that x is S-sparse and suppose
that for some k > 1, kS ∈ Z

+

δkS + k
2
p
−1δ(k+1)S < k

2
p
−1 − 1. (10)

Let b = Ax + e where ‖e‖2 ≤ ε. Then the minimizer x
∗ of P ε

p

obeys
‖x∗ − x‖2 ≤ CS,k,pε, where

CS,k,p =
2
q

1 + 1

k2/p−1(2/p−1)`
(1− δ(k+1)S)p/2 − (1 + δkS)p/2kp/2−1

´1/p
.

In summary, the theorem states that if (10) is satis ed then we can
recover S-sparse signals stably by solving P ε

p . Note that by setting
p = 1 and k = 3 in Theorem 4, we obtain Theorem 1 as a special
case. By setting ε = 0, i.e.,assuming no noise, we obtain Theorem 3
as a corollary. An important question that arises next is how well one
can recover a signal that is “just nearly sparse” [9]. In this context,
let x be arbitrary and let xS be the vector obtained by retaining the
S coef cients of x with the highest magnitudes and setting the rest
to zero.

Theorem 5 (General Case) Assume that x is arbitrary and sup-
pose that (10) holds for some k > 1, kS ∈ Z

+. Then the solution
x
∗ to P ε

p obeys

‖x∗ − x‖p
2 ≤ C

(1)
S,k,pε

p + C
(2)
S,k,p

‖x− xS‖p
p

S1−p/2
, where

C
(1)
S,k,p = 2p 1 + kp/2−1(2/p− 1)−p/2

(1− δ(k+1)S)p/2 − (1 + δkS)p/2kp/2−1
, and

C
(2)
S,k,p =

2( p
2−p

)p/2

k1−p/2

2
41 +

(1 + kp/2−1)(1 + δkS)p/2

(1− δ(k+1)S)p/2 − (1+δkS)p/2

k1−p/2

3
5 .

Thus, the reconstruction error (to the pth power) is bounded by
the sum of two terms; the rst is proportional to the observation er-
ror, while the second is proportional to the best S-term approxima-
tion error of the signal. Note here that by setting p = 1 and k = 3 in
Theorem 5, we obtain Theorem 2, with precisely the same constants.

Remarks

In Theorems 4 and 5, we provide suf cient conditions for recover-
ability of sparse or compressible signals from noisy and incomplete

measurements via �p minimization where 0 < p < 1. The constants
CS,k,p and C

(i)
S,k,p determine upper bounds on the recovery error in

the sparse and general settings, respectively. These constants depend
on S, which re ects the sparsity or the degree of compressibility of
the signal to be recovered, on p, determined by the recovery algo-
rithm we use, and on k, which is a free parameter provided (10)
holds. Our actual goal is to obtain the smallest possible constants
for given S and p, which can be done by nding the value of k that
minimizes the corresponding constant in each case. In summary,
given S and p, we can replace CS,k,p and C

(i)
S,k,p with CS,k∗,p and

C
(i)
S,k∗,p where k∗(S, p) minimizes the constants in each case.
An extensive analysis of this last minimization step depends on

the behavior of the restricted isometry constants of the matrixA and
is beyond the scope of this paper. In Section 4 we present empirical
behavior of these constants when A is a Gaussian matrix.

Finally, note that (10) is less restrictive for smaller values of p.
For example, when S is large so that (10) does not hold for p = 1,
there may still exist some p < 1 for which (10) holds for some k.

3. PROOF OUTLINES

Due to lack of space, we only present the outlines of the proofs,
which mainly follow those of [1] with modi cations to account for
the fact p < 1.
Proof outline for Theorem 4. Let x be the original signal with its
S nonzero coef cients supported on T0 and let x∗ the solution to
P ε

p . Let h = x
∗ − x = hT0 + hTc

0
be the difference between

the original and recovered signal, divided into two parts hT0
with

nonzero coef cients on T0 and hTc

0
similarly supported on T c

0 . It
can easily be shown that ‖hTc

0
‖p

p ≤ ‖hT0‖p
p.

Divide T c
0 into sets T1, T2, ... such that ∪i≥1Ti = T c

0 , where T1

supports the kS largest coef cients of hTc
0
, T2 supports the second

kS largest coef cients of hTc
0
, and so on. Let T01 = T0 ∪ T1. Note

that Ah = AT01hT01 +
P

i≥2 ATihTi . Since both x and x
∗ are

feasible then ‖Ah‖2 ≤ 2ε. This leads to the following inequality

(2ε)p ≥ ‖Ah‖p
2 ≥ ‖AT01hT01‖p

2 −
X
i≥2

‖ATihTi‖p
2. (11)

Since#(T01) = (k + 1)S and #(Ti) = kS, then

(2ε)p ≥ `
1− δ(k+1)S

´p/2‖hT01‖p
2 −

`
1 + δ(k)S

´p/2
X
i≥2

‖hTi‖p
2.

(12)
What remains now is to bound

P
i≥2 ‖hTi‖p

2 and ‖hT01‖p
2 in terms

of ‖h‖2. Observe that |hTc
0
|p(l) ≤

P
i |hT c

0
|
p
(i)

l
=

‖hTc
0
‖p

p

l
, where

|hTc
0
|(l) is the lth largest element of |hTc

0
|. Thus, taking the pth

root, squaring, and summing over l ∈ T c
01 we get

‖hTc
01
‖22 ≤

‖hTc
0
‖2p

2−p
p

(kS)2/p−1
≤ ‖hT0‖2p

2−p
p

(kS)2/p−1
(13)

Now, note that |hTi+1(u)|p ≤
P

t∈Ti
|hTi(t)|p/(kS) = ‖hTj ‖p

p/(kS).
Taking the pth root, squaring, and summing over u ∈ Ti+1, we get
‖hTi+1‖22 ≤ (kS)1−2/p‖hTi‖2p. Thus,

X
i≥2

‖hTi‖p
2 ≤ (kS)p/2−1‖hT0‖p

p. (14)

Noting that ‖hT0‖p ≤ S1/p−1/2‖hT0‖2, so ‖hT0‖p
p ≤ S1−p/2‖hT01‖p

2
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we can now substitute in (12) to get

(2ε)p ≥ `
1−δ(k+1)S

´p/2‖hT01‖p
2−

`
1+δkS

´p/2 ‖hT01‖p
2

k1−p/2
. (15)

Using (13),

‖h‖22 = ‖hT01‖22 + ‖hTc
01
‖22 ≤ ‖hT01‖22(1 +

1

k2/p−1(2/p− 1)
),

which when substituted in (15) yields the desired result.
Proof outline for Theorem 5. This proof is similar to the analogous
proof in [1] and differs from the previous one by de ning T0 as the
support set of the S largest coef cients of x , which is now no longer
assumed sparse. This leads to ‖hTc

0
‖p

p ≤ ‖hT0‖p
p+2‖xTc

0
‖p

p. Using
this inequality instead of the analogous one from the previous proof,
the rest proceeds similarly with minor modi cations to lead to the
desired result.

4. NUMERICAL EXPERIMENTS
In this section we present numerical experiments, to illustrate the
behavior of the constants in Theorems 4 and 5 and to empirically
investigate the solution of (9) in the presence of noise, and how it
depends on p.

To that end, a 256×1024matrixA is randomly generated from a
mean-zero Gaussian and held xed. We estimate the restricted isom-
etry constants of A (see Figure 1(a)) by computing singular values
of 1000 randomly selectedM×S submatrices (thus providing lower
bounds on the true values). We then estimate the values of CS,k,p

from Theorem 4 and since k is a free parameter, we compute the
minimum value of the constant over all admissible k > 1, inde-
pendently for each p. As shown in Figure 1(b) (with the optimal k
values in Figure 1(c)), the resulting bound is much tighter than that
obtained by xing k, e.g., k = 3 as in Candès and Tao [3]. Note that
the constants CS,k,p provide upper bounds which are possibly rather
pessimistic: numerical experiments where we solve (9) yield lower
errors, particularly when p is close to 0, see Figures 2 and 3. Never-
theless, there is a wide range of p values for which the constants are
well behaved, and they guarantee a stable recovery.

We now describe the experiments where we generate b = Ax+
e for sparse and compressible x with various noise levels and solve
(9). Note that the nonconvexity of P ε

p when p < 1 means that our
solutions may only be local minima. However, in the noise-free set-
ting, the observation that local �p minimization can recover signals
exactly [8], together with theoretical results providing circumstances
under which the global �p minimizer is exact [10], suggest that local
minimization algorithms may give global solutions in this context.

Our approach to solving (9) is to rst solve the simpler, uncon-
strained formulation:

Pμ,p : min
x

‖x‖p
p + μ‖b−Ax‖2. (16)

The parameter μ is adjusted manually and the minimization repeated,
until the constraint in (9) is active. For each μ, the problem (16) is
solved using an iteratively-reweighted least squares approach [11].
Code for this was contributed by Wotao Yin, for which we are grate-
ful. The previous iterate xn−1 is substituted into the Euler-Lagrange
equation, leading to a linear equation to solve for the next iterate xn:

ˆ
x

2
n−1 + ε

˜ p−2
2 xn + μAT (Axn − b) = 0, (17)

where the operations in the rst term are to be understood compo-
nentwise, and the ε is added to avoid division by zero (as p − 2 is
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Fig. 1. (a) Estimates of δS for a speci c Gaussian matrix A of
size 256 × 1024. (b) The resulting constants CS,k,p at S = 8 and
32 computed both for k = 3 and for k∗(S, p) which minimizes the
constant for a given p and S. Choosing the best k reduces the upper
bound on the reconstruction error. (c) The values of k∗(S, p). The
dip at p = 1

2
for S = 8 is likely due to small numerical differences

arising from 1/p being an integer. For both S = 8 and S = 32, once
p is large enough, there is no k > 1 for which (10) is satis ed.

negative). We begin the iteration with the minimum-norm solution
toAx = b, and use the strategy found effective in [8] (see also [12])
of using a moderately large ε = 1, then iteratively decrementing ε
by a factor of 10 after convergence and then repeating. Convergence
was deemed complete when ‖xn − xn−1‖2 < 10−8.

Sample results are shown in Figures 2 and 3 . The signals x

were randomly generated from a mean-zero Gaussian distribution
(σ = 1) on the support of x. Solutions were computed for p =
0.01, 0.1, 0.2, . . . , 1, for a very sparse signal (S = 8), a not so
sparse signal (S = 90), and a compressible but not sparse signal
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Fig. 2. Plots of reconstruction error versus p for solutions of (9).
Top: for a very sparse signal, the reconstruction error rises with p.
Middle: for a less sparse signal, when the noise level is not too large,
the error changes little, except for large p where the reconstruction
is poor. For stronger noise, the reconstruction is uniformly poor.
Bottom: for a signal that is compressible but not sparse, the error
rises for small or large p, being least for p about 1/2.

obtained by adding small Gaussian noise (σ = 0.01) to a randomly
generated (σ = 2) sparse signal (S = 32). Gaussian noise of differ-
ent levels was added toAx to obtain the noisy measurements b.
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