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ABSTRACT

In this paper, we investigate the application of compressive
sensing and waveform design for estimating linear time-vary-
ing system characteristics. Based on the fact that the spread-
ing function system representation is sparse in realistic sys-
tem scenarios, we propose a new method for the identifica-
tion of narrowband, wideband and dispersive systems using a
small set of measurements. Through numerical simulations,
we successfully demonstrate the feasibility of using compres-
sive sensing to estimate the system spreading function.

Index Terms— Linear time-varying system, compressive
sensing, system identification

1. INTRODUCTION

Processing of linear time-varying (LTV) systems is important
in numerous applications including radar, sonar and commu-
nications. As a result, different mathematical representations
have been used to characterize LTV systems. In particular,
an LTV system can be characterized by a kernel representa-
tion associated with a characteristic transform and a spreading
function. The characteristic transform describes how the sys-
tem affects the propagating signal, and the spreading function
describes how the signal energy diffuses during propagation.

LTV systems can be classified as narrowband, wideband
and dispersive. Narrowband LTV systems can be represented
by the narrowband spreading function (SF) [1]; this repre-
sentation has received wide application with multipath fast-
fading wireless communication channels as well as radar and
sonar systems. LTV systems with wideband properties have
also been represented using the kernel formulation and a wide-
band version of the SF (WSF). Wideband LTV systems are
characterized by time delay and Doppler scale changes to de-
scribe the physical effect of the system on the analysis sig-
nal [2, 3]. There are many systems in nature with dispersive
time-frequency characteristics as they can cause different fre-
quency components to be shifted by different amounts. A
dispersive system output can be modeled as a superposition
of instantaneous frequency shifts, weighted by a matched dis-
persive spreading function (DSF) [4]. Using a discretization
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procedure, and under certain physical assumptions on the sys-
tems, we can obtain discrete equivalent representations for
LTV systems,which are useful in real applications.

LTV system identification is equivalent to estimating the
spreading function of the corresponding system. However,
this is a difficult problem in general. In this paper, we pro-
pose to solve this problem by considering the fact that in
many cases, due to physical restrictions on the real systems,
the spreading functions of the aforementioned LTV systems
are sparse. For example, mobile radio channels can be ap-
proximated as underspread as they do not introduce substan-
tial TF shifts [5]. Recently, there has been a growing inter-
est in recovering sparse signals from their projection onto a
random vector using compressive sensing [6]. As a result,
we use compressive sensing to identify LTV systems from a
small set of measurements. This is potentially useful in ap-
plications where one cannot collect a lot of measurements or
cannot transmit many signals.

After a short review on LTV system characterizations in
Section 2, we present the SF estimation approach in Section 3.
In Section 4, we present the waveform design needed for com-
pressive sensing, and we present some simulations in Sec-
tion 5.

2. LTV SYSTEM REPRESENTATIONS

2.1. LTV Systems

Narrowband System Representations The output of a nar-
rowband LTV system can be represented as a superposition of
time-frequency (TF) shifted versions of the input signal x(t),
weighted by the SF, i.e.,

(Lx)(t)=

∫ ∞

−∞

∫ ∞

−∞
SFL(τ, ν)e−jπτν(MνSτx)(t)dνdτ, (1)

where (Sτx)(t) = x(t−τ) is the time shift operation, and the
frequency shift operation is given by (Mνx)(t) = x(t) ej2πνt.

Assuming that the input signal x(t) is bandlimited to [f0, f1]
with bandwidth W = f1 − f0 and that the output signal
(Lx)(t) is time-limited to [t0, t1] with duration T = t1 − t0,
(1) can be decomposed into

(Lx)(t) =
∑
m∈Z

∑
n∈Z

ŜFL(
m

W
,
n

T
)xm,n(t) (2)
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where xm,n(t) = (M n
T
Sm

W
x)(t) and ŜFL( m

W , n
T ) are two-

dimensional (2-D) samples of a smoothed SF [1].

Wideband System Representations For a wideband LTV
systemB defined on L2(R) with input x(t), the output (Bx)(t)
can be characterized by a superposition of time shifts and
scale changes, weighted by the WSF,

(Bx)(t) =

∫ ∞

0

∫ ∞

−∞
WSFB(τ, a)(SτCax)(t)dτda . (3)

The scale operation (Cax)(t) =
√
|a|x(at) is due to reflec-

tions off fast moving point scatterers. The discrete wideband
model of (3) was obtained in [2] assuming that the Fourier
transform X(f) of the input signal x(t) is bounded within
f ∈ [−W/2, W/2], and that its Mellin transform MTx(β) is
bounded within β ∈ [−β0/2, β0/2]. Specifically,

y(t) =
∑
m∈Z

∑
n∈Z

χ̂B(
n

am
0 W

, am
0 ) a

m
2

0 x(am
0 t−

n

W
) (4)

where the basic scaling factor is a0 = e1/β0 , and χ̂B(τ, a) is
a 2-D smoothed version of the WSF.

Dispersive System Representations If a dispersive system
Z changes the phase function of the input x(t) by1 ξ(t/tr),
the dispersive (time-dependent) frequency shift is given by
ν(t) = d

dtξ(t/tr). A dispersive version of the SF (DSF) was
developed to match the system dynamics based on ξ(t/tr).
Specifically, the DSF was used to interpret the system output
(Zx)(t) as a weighted superposition of dispersive transfor-
mations on x(t):

(Zx)(t)=

∫ ∞

−∞

∫ ∞

−∞
DSFZ(ζ, β) e−jπζβ(D

(ξ)
β G

(ξ)
ζ x)(t)dζdβ.

These transformations correspond to a generalized time shift
operationG(ξ)

ζ x)(t) = (U−1
ξ StrζUξx)(t) and an instantaneous

frequency shift operation (D
(ξ)
β x)(t) = (U−1

ξ Mβ/tr
Uξx)(t)

= x(t)e−j2πξ( t
tr

), whereMν and Sτ are defined in (1). The
unitary warping operator Uξ is defined as

(Uξx)(t) =

∣∣∣∣trν
(

ξ−1

(
t

tr

))∣∣∣∣−1/2

x

(
trξ

−1

(
t

tr

))
(5)

where (U−1
ξ Uξx)(t) = x(t). The warping relationship as-

sumes that ξ(t/tr) is a one-to-one function with ξ−1(ξ(t/tr))
= t/tr. The corresponding discrete model can be found in [4].
It is worth noting that the composite system UξZU

−1
ξ is a uni-

tary equivalent narrowband system, for which the input and
output are the time warped signals, (Uξx)(t) and (UξZx)(t),

respectively. Specifically, DSFZ(ζ, β) = SFUξZ
(
trζ, β

tr

)
.

1Here, tr > 0 is a normalized time reference

2.2. Matrix Formulation of LTV System Outputs

We consider the matrix formulation for discrete LTV system
outputs. As an example, we provide the matrix formulation
for the narrowband system in (2). Considering D samples of
the TF shifted waveform xm,n(t), we obtain the vector xm,n

= [xm,n[1], xm,n[2], · · · , xm,n[D] ]
T. The D × K matrix

Φ = [x0,0, · · · , xm,n, · · · , xM−1,N−1] contains M time shifts
and N frequency shifts of the TF shifted waveform when
K = MN . We also concatenate the SF into the K × 1 =
MN × 1 vector H = [ŜFL(0, 0), · · · , ŜFL(m, n), · · · ,

ŜFL(M − 1, N − 1)]T. Hence, the system output vector can
be expressed as

Y = ΦH. (6)

Following a similar procedure, we can obtain a similar matrix
formulation for wideband and dispersive systems.

3. SPREADING FUNCTION ESTIMATION USING
COMPRESSIVE SENSING

Using the matrix representation for a discrete LTV system in
(6), we can express the system output as Y = ΦH. Here,
H represents the spreading function that is assumed to be an
S-sparse vector, and Φ ∈ R

D×K is the matrix representation
of the signal basis. Our goal is to identify the correspond-
ing LTV system by determining H from a set of L available
samples (which we refer to as measurements), where L is less
than D, the dimension of Y. Specifically, we want to deter-
mine H from s = AY = AΦH, by finding the measurement
matrix A ∈ R

L×D. We denote Ψ = AΦ so that s = ΨH.
Before we proceed with the estimation of H, we briefly

review some important definitions and principles of compres-
sive sensing [6, 7].

3.1. Compressive Sensing Principles

We start our description by reviewing some relevant princi-
ples. The basis pursuit (BP) principle is used to solve the con-
vex programming problem: min ||H||�1 subject to s = ΨH,
where ||H||�1 =

∑
i |Hi| denotes the �1-norm. This can be

done using linear programming in the real case and cone pro-
gramming in the complex case [7].

Let Λ ⊂ {1, · · · , d} and let ΨΛ be the submatrix of Ψ
consisting of the columns indexed by Λ. The local isometry
constant δΛ = δΛ(Ψ) is the smallest number satisfying (1 −
δΛ)||H||22 ≤ ||ΨΛH||22 ≤ (1 + δΛ)||H||22 for all coefficient
vectors supported on Λ [7]. The (global) restricted isometry
constant is then defined as

δS = δS(Ψ) := sup|Λ|=SδΛ(Ψ), S ∈ N.

Candès, Romberg and Tao proved the following recovery
theorem for the BP in [7]:
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Theorem 3.1 Assume that Ψ satisfies δ3S(Ψ)+3δ4S(Ψ) < 2
for some S ∈ N. Let H be an S-sparse vector and assume we
are given noisy data Y = ΨH + ξ with ||ξ||2 ≤ η. Then the
solution Ĥ to the BP problem satisfies ||Ĥ −H||2 ≤ Cη. The
constant C depends only on δ3S and δ4S . If δ4S ≤ 1/3 then
C ≤ 15.41. In particular, if no noise is present, i.e., η = 0,
then under the stated condition, BP recovers H exactly.

3.2. The Measurement Matrix A

For our application, we choose a measurement matrix A in
Ψ = AΦ which satisfies the concentration inequality

P(
∣∣||Av||2 − ||v||2

∣∣ ≥ ε||v||) ≤ 2e−c L
2

ε2

, ε ∈ (0,
1

3
),

for all v ∈ R
D and some constant c > 0 [8], where P(·) de-

notes probability. This inequality is satisfied by the Gaussian
ensemble random matrix [8]. Specifically, if the entries of A
are independent normal variables with mean zero and vari-
ance L−1, then the concentration inequality holds with c =
7/18.

3.3. Stable Recovery Condition Using Basis Pursuit

In [8], the isometry constants of matrix Ψ = AΦ were esti-
mated using the following theorem.

Theorem 3.2 Let Ψ ∈ R
D×K be a dictionary with coherence

μ. Assume that S − 1 ≤ 1
16μ−1. Let A ∈ R

L×D be a random
matrix that satisfies the concentration inequality. Assume that

L ≥ C1(S log(K/S) + C2 + t), (7)

where t is a positive real number. Then with probability at
least 1 − e−t, the composed matrix Ψ = AΦ has restricted
isometry constant δS(Ψ) ≤ 1/3. The constants satisfy C1 ≤
138.51c−1 and C2 ≤ log(1250/13) + 1 ≈ 5.57.

Assuming that each column of matrix Φ is normalized to
1, the coherence μ of the matrix Φ is defined as

μ := maxi�=j | 〈ϕi, ϕj〉 |,

where ϕi and ϕj are the ith and jth column of Φ, respectively.
Combining Theorem 3.1 and Theorem 3.2, we can obtain the
stable recovery condition for the spreading function vector
H using BP. Specifically, the number of necessary measure-
ments L is on the order of S log(K/S).

4. WAVEFORM DESIGN

According to Theorem 3.2, a very low coherence of Φ is re-
quired to satisfy the condition S − 1 ≤ 1

16μ for compressive
sampling. Also the research in [8] shows that if the columns
of Φ are orthogonal, the upper bound of the required number

of samples for stable recovery decreases. As a result, we need
to design the desired transmission waveforms to generate the
orthogonal basis in Φ for different types of LTV systems.

For narrowband systems, we can consider the direct se-
quence code division multiple access (DS-CDMA) signal as
the basic transmission waveform. The DS-CDMA signal is
generated using a pseudo noise (PN) sequence. If the length
of the PN code is Nc, the waveform is designed as x(t) =∑Nc−1

p=0 cnv(t − pTc) where cn is the nth bit or chip of the
PN sequence, and v(t) is the PN chip waveform with dura-
tion Tc. It is known that orthogonality exists between dif-
ferent TF shifted versions of these waveforms [1]. Specifi-
cally, 〈xm,n, xm′,n′〉 =

∫ T

0 xm,n(t), x∗m′,n′(t)dt ≈ Cδ[m −
m′]δ[l−l′] where δ[·] denotes the Kronecker delta function, C
is a constant, and T = NcTc is the duration of the DS-CDMA
signal waveform.

For wideband systems, in order to obtain a set of orthogo-
nal basis, and due to the similarity of xn,m(t) in (4) to ortho-
normal wavelet functions, we propose a wavelet-based wave-
form design scheme [2]. Specifically, if we let ψ(t) be a basis
wavelet function and ψn,m(t) = 2−

m
2 ψ( t

2m − n), n, m ∈ Z

constitute an orthonormal basis on L2(R), then we can choose
the signaling waveform in (4) to be x(t) = 1√

Tw
ψ( t

Tw
), where

Tw is some positive real number. Assuming that W ≈ 1/Tw

and letting a0 = 1
2 , the signal xn,m(t) in (4) also consti-

tutes an orthonormal basis since ∀n, n′, m, m′ ∈ Z , we have
1

Tw

∫∞
−∞ψm,n( t

Tw
)ψ∗m′,n′( t

Tw
) dt = δ[n− n′] δ[m−m′].

For a dispersive system, as it is a unitarily equivalent rep-
resentation to the narrowband system, we can use the corre-
sponding warped version of the aforementioned narrowband
waveform design scheme. We can design the waveform as
x(t) =

∑Nc−1
p=0 cn(U−1

ξ v)(t − pTc), which is also a form of
DS-CDMA signaling. Using the unitary relationship, it can
be shown that the corresponding basis functions xm,n(t) are
orthogonal to each other. As a result, Φ will have orthogonal
columns for the application of compressive sensing.

5. SIMULATIONS

We demonstrate the identification results for narrowband sys-
tems using numerical simulations. The parameters we use
for the simulations are as follows. We design the transmis-
sion waveform using a PN code with length 1023, and we
assume that the system causes M = 21 time shifts and N =
11 frequency shifts. Specifically, for xm,n(t) in (2), m =
0, 1, · · · , 20 and n = −5,−4, · · · , 5, respectively. Hence, the
number of basis is K = MN = 231 and the length of the out-
put vector is D = 1043 samples. We assume that the vector
for the spreading function H is S-sparse with S = 
K/10� =
23, where 
·� means rounding to the nearest smaller integer.
We use a random Gaussian ensemble matrix for A. The ap-
plication of compressive sensing yields an A matrix with di-
mension L×D where L = 
4.5S log K/S� = 238.
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Fig. 1. (a) SF of a narrowband system. (b) Recovered SF
using compressive sensing. (c) Recovered SF using compres-
sive sensing with insufficient samples.(d) WSF of a wideband
system. (e) Recovered WSF using compressive sensing. (f)
Recovered WSF using compressive sensing with insufficient
samples.

We denote the estimated spreading function as Ĥ, and de-

fine the estimation error rate as ε = E
( ||�H−H||�1

||H||�1

)
, where

E(·) denotes expectation. In the following simulations, we
obtain ε by averaging the results of 100 simulations. In Fig-
ures 1(a) and 1(b), we demonstrate the narrowband SF and
its estimation. As we can see, the S-sparse vector H can be
perfectly recovered by 238 measurements (out of the D =
1043 possible measurements) with ε ≈ 4.35 × 10−6. In
Fig.1(c), we demonstrate an unsuccessful SF estimation us-
ing L = 
3.5S log K/S� = 185 samples, and we can see the
evident estimation error in the recovered SF with ε ≈ 0.93.

We also investigate the system identification results for a
wideband system. We design the transmission waveform us-
ing Daubechies wavelets, and we assume that there are M =
6 Doppler-scale changes. Specifically, in (4), m = 0, 1, · · · ,
5, and for each m, there exits N = 
DTs/(2mTw)� time
shifts, where 
2mTw/Ts� is the length of the wavelet after
scaling and Ts is the sampling period of the wavelet. The
number of signal basis is K = 252 and the length of the out-

put vector is D = 1024 samples. We assume that the vector
for the WSF H is S-sparse with S = 
K/5� = 50, and we
use a random Gaussian ensemble matrix for A. The true WSF
is shown in Fig. 1(d). The accurate estimation results are ob-
tained using L = 
3S log K/S� = 242. In Fig. 1(e), As we
can see, the S-sparse vector H was perfectly recovered using
242 measurements with ε ≈ 5.67× 10−4. In Fig.1(f), we es-
timate the spreading function using L = 
1.5S log K/S� =
121 samples; the recovered WSF has a large error of ε ≈ 0.57.

6. CONCLUSION

In this paper, we demonstrated the application of compres-
sive sensing for estimating the spreading functions of differ-
ent types of LTV systems. Specifically, we investigated the
stable recovery conditions for the spreading functions by de-
signing the appropriate waveform for the different systems.
Our simulations showed that we can estimate the LTV sys-
tem using a reduced number of measurements. Note that we
are currently considering noisy systems as this processing as-
sumed a very high signal-to-noise ratio.
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