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ABSTRACT

We consider the deterministic construction of a measure-

ment matrix and a recovery method for signals that are block
sparse. A signal that has dimension N = nd, which con-

sists of n blocks of size d, is called (s, d)-block sparse if

only s blocks out of n are nonzero. We construct an ex-

plicit linear mapping Φ that maps the (s, d)-block sparse sig-

nal to a measurement vector of dimension M , where s · d <

N
(
1− (

1− M
N

) d
d+1

)
− o(1). We show that if the (s, d)-

block sparse signal is chosen uniformly at random then the

signal can almost surely be reconstructed from the measure-

ment vector in O(N3) computations.

Index Terms— Convex optimization, sparse signals,

Reed-Solomon codes, decoding algorithms, compressed

sensing.

1. INTRODUCTION

Consider the set of signals of dimension N with at most s
nonzero element over C

N . This set of signals spans the union

of
(
N
s

)
subspaces of dimension s over C

N . If we project these

subspaces to a random subspace of dimension s+1, then with

high probability we get a one to one mapping between the

projected sparse signals and the original ones. The recent re-

sults of Candés, Donoho, Romberg, and Tao [2, 3, 5], applied

to applications such as tomography and digital photography,

have revealed the power of random sampling. Recently, many

other applications for compressed sensing have been devel-

oped in areas such as data mining, DNA microarrays, and A/D

converters.

Let ΦM,N denotes the linear measurement matrix, so that

the samples or the measurements of a sparse signal x∈C
N

become y = Φ · x∈C
M , M � s + 1. To reconstruct the
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signal x from the measurement vector y one needs to solve

the underdetermined linear system of equations Φx = y, for

a given y, under the condition that x is a s-sparse signal. This

can be represented as the following optimization problem:

min
x
‖x‖0 subject to Φx = y (1)

Here the �0 norm or the Hamming norm is the number of

nonzero elements of x.

A naive exhaustive search checks all the possible
(
N
s

)
nonzero coordinates for the signal x to find the minimum and

that takes an exponential time in N . However, one may try to

solve (1) by relaxing the �0 norm to �1 norm.

min
x
‖x‖1 subject to Φx = y (2)

Assume δ is equal to M/N and ρ is s/M and the measure-

ment matrix Φ is chosen uniformly at random from the set

of linear projections from C
N to C

M . Donoho and Tan-

ner [5, 11] determined the region (δ, ρ) for which the �1 opti-

mization and �0 coincide. They compute two different types

of “strong”, ρS(δ), and “weak”, ρW (δ), threshold functions.

The strong threshold function ensures that �1 and �0 are equiv-

alent for s < M ρS(M/N) with overwhelming probability in

the uniform selection of measurement matrix Φ. For the weak

threshold the equivalence between (1) and (2) holds for most
signals x when s < M ρW (M/N) with overwhelming prob-

ability in uniform selection of Φ. (cf. Figure 1)

How much do we pay by relaxing the �0 optimization to
�1? Let’s define ρopt

S (δ) and ρopt
W (δ) to be the supremum of all

the threshold functions over all the linear measurements. We

know that ρopt
S = 1/2, ρ

opt
W = 1. There is a large gap between

the storing and week thresholds ρS(W )(δ) and ρopt
S(W )(δ).

How do we choose the measurement matrix Φ? In most of

the literature in compressed sampling the measurement ma-

trix is an instance of a class of random matrices. Then, with

overwhelming probability, Φ satisfies certain reconstruction

38531-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

ρ
W

ρoptS

ρoptW

δ = M/N

ρ
= 

s/M d=1

d=2

ρ

d=6

Fig. 1. Thresholds for the recovery of sparse signals. ρS is
the strong threshold and ρW is the weak threshold for linear
program. The rest are thresholds for recovery of (s, d)-block
sparse signals. Using our proposed method the improvement
over ρW is clear. As d grows, our threshold approaches ρopt

W .

properties. However, there is no efficient method for verify-
ing that a given matrix has these properties [12]. Recently,

a line of research on compressed sensing has been devoted to

the explicit construction of the measurement matrix, however,

the threshold functions of these explicit constructions are usu-

ally worst than those of �1 optimization.

1.1. Contributions

A connection between compressed sensing and Reed-Solomon

codes over the complex filed is already implicit in various

works in the literature, often under different names such as

annihilator filters and recovery of a measure from its mo-

ments [1, 7]. In this paper, we make this connection explicit

by choosing the measurement vector to be essentially the syn-

drome of the code. The sparse signal can then be recovered

by any well known decoding algorithm such as Berlekamp-

Massey for RS codes.

However, recently, there have been many remarkable

breakthroughs in list-decoding of Reed-Solomon codes such

as Sudan [10] and Guruswami-Sudan [6] algorithms; To the

best of our knowledge we are not aware of any research on

using these classes of algorithms for compressed sampling.

In a Reed-Solomon code of length N and dimension K, the

Berlekamp-Massey decoder only needs the syndrome vector

of dimension N−K to find the error locater polynomial.

The dimension of the syndrome vector is smaller than the

dimension of the received word; that is equivalent to having a

measurement vector with smaller dimension than the sparse

signal in compressed sampling. However, in the list-decoding

algorithms the whole received word is being used, and not

the syndromes, to perform the decoding. One contribution of

ours is to show that one can construct a “received word” out

of the syndrome vector to perform the list-decoding algorithm

for compressed sensing applications.

One of the crucial steps of all the Sudan-type list-decoding

algorithms is to factor a bivariate polynomial over the under-

lying field. This factorization can be done efficiently over

finite fields but we are not aware of any efficient algorithm

for factoring a bivariate polynomial over the complex field.

Instead of list-decoding, we propose to use Coppersmith and

Sudan [4] decoding. This algorithm is probabilistic and de-

codes with probability of 1−O(N c/q) where, c is a constant,

q is the size of the finite field, and N is the length of the code;

considering that errors are generated uniformly at random

in Fq. However, we show that over the complex field, the

Coppersmith-Sudan algorithm will almost surely recover the

random sparse signal. In computer science, Reed-Solomon

codes have mostly been used at rates that approaches zero

and the authors in [4] basically give decoding bounds that are

suitable for these rates. We use more advance tools from al-

gebra, such as working with the Gröbner basis of certain ideal

of polynomials and we improve the decoding bound of [4].

The new bound shows improvement compare to conventional

decoding algorithms for all rates in [0, 1].

In addition, the Coppersmith-Sudan algorithm can be

used to recover curves in three and more dimensions. That

is tantamount to the possibility of recovering block sparse

signals with a small number of measurements. Consider

a signal of dimension N which consists of n blocks of

size d = N/n. We say the signal is (s, d)-block sparse

if only s blocks out of n is nonzero. We show that using

syndrome measurements one can almost surely recover an

(s, d)-block sparse signal from M measurements efficiently

if s · d < N
(
1− (

1− M
N

) d
d+1

)
− o(1) (Check Figure 1 for

the plot of thresholds).

2. THE MEASUREMENT MATRIX

Let C denote the complex field. We use C[X1, X2, · · · , Xc]
to denote the rings of polynomials over C in several variables.

Reed-Solomon codes are obtained by evaluation of certain

function in C[X] in a set of points D = {ω0, ω1, · · · , ωN−1}
in C. Throughout this work we choose ωi = λi for i =
0, 1, · · · , N − 1, where λ is the N -th root of unity. 1 A Reed-

Solomon code RS (N, K) of length N and dimension K over

the complex field is defined as follows:

RS (N, K) def= {(f(ω0), f(ω1), · · · , f(ωN−1)) :
f(X)∈C[X], deg f < K}

Notice that RS (N, K) is a subspace of dimension K in

C
N . Define Synd (N, K) to be the orthogonal space to

1In the general case ωi’s can be any set of different numbers in C. We

choose them to be on the unit circle with equal distance so that the measure-

ment becomes the inverse Fourier transform.
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RS (N, K).

Synd (N, K) def=
{
(v1, v2, · · · , vN )∈C

N :
〈v, c〉 = 0, for all c∈RS (N, K)}

We call Synd (N, K) the syndrome or the measurement
space.

Definition 1 Set K = N −M and consider the correspond-
ing linear projection Φ from C

N to Synd (N, K). We define
the M -dimensional measurement of x to be

y = Φ · x. (3)

Lemma 1 Assume that the evaluation points of the RS code
are the consecutive powers of the N -th root of unity, i.e. ωi =
λi for i = 0, 1, · · · , N−1, then the measurement vector y
in (3) is the inverse Fourier transform of x at frequencies
ωK , ωK+1, · · · , ωN−1.

Lemma 2 Any vector x∈C
N can be written uniquely as a

summation of vectors r∈Synd (N, K) and c∈RS (N, K):

y = Φx ∈C
N−K

r = Φ†y ∈Synd (N, K)
c = x− r ∈RS (N, K)

(4)

where Φ† is the conjugate transpose of Φ.

For a given measurement vector y of the s-sparse signal x
we construct the “received vector” r = Φ†y. Now, from Lem-

ma 2, we know that r = x + c for some c∈RS (N, K). That

means, r is simply a RS codeword c that has been corrupted

at s positions. Thus, for example, if we use the Berlekamp-

Massey algorithm to decode r, as far as the number of cor-

rupted coordinates is smaller than half the minimum distance

of the code s < (N − K)/2 = M/2, the decoder outputs

the codeword c and sparse signal x. In the next section, we

explore the possibility of using other RS decoding algorithms

for compressed sensing.

3. RECOVERY FROM THE MEASUREMENTS

Now that we have established a connection between the re-

covery of the sparse signal x from the measurement vector

y = Φx and the RS decoding of r = Φ†y, we can use other

advanced decoding algorithms such as the list-decoding al-

gorithm of Guruswami-Sudan [6] for recovery. The bottle-

neck of the Guruswami-Sudan algorithm over complex fields

is the factorization part. We are not aware of any efficient

factorization algorithm over the complex field. Considering

the fact that there are many efficient algorithms to factor uni-

variate polynomials over the complex field, one can use the

Ruth-Ruckenstein [9] algorithm. However, the algorithm, in

principle, is sensitive to numerical inaccuracies.

Another elegant decoding algorithm with bounds compa-

rable to the list-decoding algorithm of GS was introduced by

Coppersmith and Sudan [4]. Their algorithm does not rely on

tools such as the factoring of multivariate polynomials. Basi-

cally, given a received word, they construct a matrix A such

that the right kernel of A with high probability consists of

vectors with support that is entirely on the “non-error” coor-

dinates of the received vector.

We show that, over the complex field their algorithm al-
most surly recovers the codeword if the sparse signal is cho-

sen uniformly at random over C
N , we further improve the

bounds [4] and show that the performance of the algorithm is

comparable to the list-decoding algorithm of GS at all rates in

[0, 1].

Notations and definitions. Given Δ, letMK,Δ be the set of

monomials XaY b with a + (K − 1)b � Δ. For a positive

integer p, let Sp = {(d, e) : d + e < p}. Given (d, e)∈Sp,

let f [d,e]
α,β;M be the vector in C

|M| whose coordinates are in-

dexed by monomials M in M and whose M th coordinate is
∂d+e

∂Xd∂Y e XaY b|(α,β) if M = XaY b.

Algorithm 1 Coppersmith-Sudan decoding algorithm

Input: Received vector r∈C
N , multiplicity p, and codeword

dimension K.

Output: Codeword c∈C
N or FAIL.

1: Parameters: Set Δ sufficiently large such that

|MK,Δ| � N · |Sp|.
2: Step 1: Let A be the matrix whose columns are in-

dexed by pairs (i, (d, e)) with i∈{0, 1, · · · , N − 1}
and(d, e)∈Sp where the (i, (e, d))th column is f [d,e]

ωi,ri;M.

Let b be a non-zero vector such that A · b = 0.

3: Step 2: Let J be the set of all indices i∈{0, 1, · · · , N −
1} such that there exists a tuple (d, e)∈Sp for which the

(i, (d, e))th coordinate of b is nonzero.

4: if there exists a polynomial f(X) with deg f(X) < K
such that f(ωi) = ri for every i∈J then

5: return c = (f(ω0), f(ω1), · · · , f(ωN−1)).
6: else
7: return FAIL.
8: end if

4. ANALYSIS OF THE ALGORITHM

Due to lack of space we omit the proofs. For details, the

reader is referred to [8]. Let I denote the set of non-error posi-

tions of r and t = |I|. Let f(X) be the corresponding polyno-

mial of the RS codeword c. We prove the following Lemmas.

First, the matrix A does have a rank less than N · |Sp| and

thus a vector b as required in Step 1 does exist. Second, with

high probability the subset J found in Step 2 is a subset of

I . Third, the size of J is at least K and so there is at most

one polynomial f(X) of degree less than K that interpolates
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Fig. 2. Simulation results at different noise levels. N = 50,
M = 25, � is for the Berlekamp-Massey, × is for the
Coppersmith-Sudan, O is for the Lasso.

through points of J .

Let B be the |M| × (|Sp| · t) matrix consisting of those

columns of A that correspond to i∈ I .

Lemma 3 (i) If t > Δ/p, then the matrix B has column
dependency. (ii) There are no column dependencies in B
involving fewer that H blocks of columns, provided Δ >
pH + p(p + 1)/2 . (iii) Almost surely, the matrix A has no
linear dependencies involving any of the columns indexed by
(i, (e, d)) where i /∈ I , provided |MΔ−(2p+1)| > N · |Sp| .

Theorem 1 For every fixed constant d, using the syndrome
measurement matrix with the Coppersmith-Sudan decoding
algorithm we can almost surely recover (s, d)-block sparse
signals from M = δN measurements if

S < M
1− (1− δ)

d
d+1

δ
− o(1) (5)

where S = s · d is the number of nonzero elements of the
sparse signal, and N is size of the sparse signal.

Remark. When d = 1, then (5) reduces to S < M(1 −√
1− δ)/δ, which is greater than 1/2 for all δ ∈ [0, 1].

5. ROBUSTNESS TO NOISE

In practice the measurement vector is usually corrupted by

noise. Let N (0, σ) be a complex Gaussian random variable

with zero mean and standard deviation σ. We assume that

yw = Φ · x + w (6)

where w∈NM (0, σ). We choose x at random, i.e. the sup-

port of x is chosen uniformly at random from all the possible

(
N
s

)
subsets and the values are drawn i.i.d. formN (0, 1). Due

to the noise, the matrix A is full rank, so in Algorithm 1 we

choose b to be the right singular vector with the smallest sin-

gular value. Figure 2 shows the median of the squared error

‖x−x̂‖2 as a function of the sparsity s. From the Figure 2, Al-

gorithm 1 is more robust to noise than the BM algorithm. We

also compare the performance to the well known LASSO al-

gorithm [13] which minimizes ‖x−x̂‖2 with an �1 constraint.
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