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ABSTRACT

We attempt to quantify the possible gains that can be achieved by ex-
amining a rate-distortion competition between a conventional and a
compressive sampling solution to data rate reduction. Simple ap-
proximate expression are developed for the minimum bit rate re-
quired to obtain the best achievable average performance from the
compressive sensing system and the performance that would be
achieved if that rate requirement was met. An example of a signal
that contains a small number of phasors in Gaussian white noise is
used to validate these results and to compare the degradation in per-
formance of the 2 systems when lower bit rates than those required
by the theory are employed.

Index Terms— compressive sensing, rate-distortion

1. INTRODUCTION

The original compressed sensing concepts of [1][2] have been ex-
tended to handle noisy environments as in [3] and [4]: the driver
in [3] has been to provide upper bounds on the achievable distor-
tion in the reconstruction i.e. what is the worst performance that
can be guaranteed while in [5] rate distortion theory is used to set
lower bounds on the distortion in reconstruction for both low and
high signal to noise conditions. In [6] expressions for the asymptotic
bounds on the distortion at a particular rate are developed. While in
[7], a lower bound on the minimum signal-to-noise ratio to detect
a sparse signal is derived. The objective here is to develop approxi-
mate expressions for the minimum bit rate required to obtain the best
achievable average performance from a compressive sensing system
and the performance that would be achieved if that rate requirement
was met.

The paper is organised as follows: in section 2 a rate-distortion
competition is de ned; assumptions are set out in section 3; section
4 provides expressions for the bit rate required to obtain the best
achievable performance from a compressive sensing system as well
as an estimate for the reconstruction distortion when that rate is sat-
is ed; these expressions are validated for a phasors in white noise
problem in section 5 using the orthogonal least squares (OLS) al-
gorithm [8] (with an appropriately chosen stopping criteria) as the
reconstruction algorithm; brief conclusions are drawn in section 6.
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Fig. 1. Block diagram: rate-distortion competition

2. PROBLEM DEFINITION

An N -vector, y , of complex measurements is assumed to be a sparse
combination of M N -vectors such as φ

i
and additive white Gaussian

noise n. Thus:

y = Φh + n = x + n (1)

where: Φ = [φ
1
φ

2
...φ

M
]. The majority of the elements of M -

vector h are zero. The matrix of atoms Φ is (N × M) where
M > N to allow for frames and overcomplete representations.
The “clean” or noise free signal is x. The signal to noise ratio is:
Syn = |Φh|2/Nσ2

n where σ2
n = E[nin

∗
i ] is the variance of each

element of the white noise vector. The classical or conventional ap-
proach is to quantize y using simple scalar quantization of its ele-
ments and transmit these quantized samples as in the upper branch
of Fig. 1.

The lower branch of Fig 1 illustrates the compressive sensing
approach. To reduce the amount of data and/or compress the data a
further matrix multiplication is applied to y using a P × N matrix
P

z = Py = (PΦ)h + Pn (2)

where P < N . To ease the burden of coding, P is chosen to be com-
putationally simple. Equation (2) is a similar problem to (1) with
(PΦ) replacing Φ. Thus Fig. 1 illustrates a rate distortion com-
petition between a compressive sensing system and a conventional
scalar quantizer (upper branch). Whether we reconstruct from y or
from z the distortion measure, measure of the signal reconstruction
quality or mean squared error (MSE) is:

Dr =
E[|x − x̂|2]

|x|2 (3)
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Quantized data is transmitted over identical communications chan-
nels to receivers (RX) which perform the reconstruction. The effects
of the communications channels are not considered here.

Consider the case were P is a Bernoulli type matrix whose ele-
ments are drawn at random from ±1 ± j we have the identity:

tr(PHP) = 2PN (4)

and the approximation:

PPH ≈ 2NIP (5)

the latter is similar to estimating the covariance matrix of a white
random process and is reasonable provided P < N/2. The other
matrix that is signi cant is PHP for which:

E[PHP] = 2P IN (6)

Lastly, the measurement noise, quantization noise and projection
matrices are mutually independent random variables.

3. RATE AND DISTORTION

First quantize and transmit the elements of z

zq = q((PΦ)h + Pn)

≈ (PΦ)h + Pn + nqz (7)

where nqz is the usual additive i.i.d. approximation with signal to
quantization noise, Szq de ned as:

Sqz = 10 log10

�
E[hHΦHPHPΦh] + E[nHPHPn]

E[nH
qznqz]

�

(8)

The number of bits required to transmit P elements of z is propor-
tional to: PSzq/6. To transmit the signal and measurement noise
without further distortion the quantization noise level should be set
below that of the thermal noise, i.e.:

E[nH
qznqz] < E[nHPHPn] (9)

giving a lower bound on Szq of:

Sqz > 10 log10

�
1 +

tr(E[PHP]xxH)

tr(PHP)σ2
n

�

> 10 log10

�
1 +

|x|2
Nσ2

n

�
(10)

Thus by drawing a projection matrix P at random the average signal
to noise ratio in each element of the vector z is almost identical to
the signal to noise ratio in each element of the vector y. As indi-
cated earlier this signal to noise ratio indicates the minimum number
of bits per element required to represent these vectors. Allocating
many more bits than this is not likely to provide much in the way of
performance improvement. This does not, however, tell us how much
performance loss we might incur by using z rather than y. To get
the best performance out of z, we need to transmit more than:

P

6N

�
1 +

|x|2
Nσ2

n

�
dB

bits/sample (11)

of y. Thus to reach the best achievable performance we might prag-
matically expect to have to transmit one extra bit per element of z in
which case the rate expression becomes:

Rz ≈ P

6N

�
1 +

|x|2
σ2

nN

�
dB

+
P

N
(12)

Given P samples in z, this is the minimum bit rate required to pro-
vide the best achievable reconstruction performance from these sam-
ples. Ideally we desire a relationship between quality of reconstruc-
tion and bit rate. Recalling the de ning equation (1) and adopting
an “oracle assumption”, i.e.: assuming that a greedy algorithm such
as OLS [8] or orthogonal matching pursuit (OMP) [9] has correctly
selected the Na non-zero or “active” elements in h to form a Na-
vector ha, we have:

z = Py = (PΦa)ha + Pn

where Φa is a N × Na matrix constructed from the appropriate
columns of Φ where N > Na. With these assumptions we now
have a classical overdetermined set of equations with a least squares
solution. There is considerable literature and analysis available un-
der the heading of “recursive least squares” adaptive ltering [10].
The LS estimate is given by:

ĥa =
�
ΦH

a PHPΦa

�−1

ΦH
a PHz (13)

and the estimation error he = ha − ĥa is given by:

ĥe =
�
ΦH

a PHPΦa

�−1

ΦH
a PHPn

Using (5) the error covariance matrix is approximated:

E[heh
H
e ] ≈ 2Nσ2

nEp

��
ΦH

a PHPΦa

�−1
�

(14)

The order of the expectation operator and the matrix inversion can
be interchanged if the row vectors of PΦa are i.i.d. Gaussian (Ap-
pendix G of [10]). With this in mind, consider the ith row vector of
P as pH

i , the ith row vector of PΦa is thus pH
i Φa. Hence if the

row vectors of P are independent so will the row vectors of PΦa.
Further, since each row pH

i Φa is itself constructed from Na linear
combinations of N i.i.d. random variables, the central limit theorem
would suggest that this row vector would be well approximated by a
Gaussian distribution. With this Gaussian i.i.d. assumption, (14) can
be simpli ed for P > Na + 1:

E[heh
H
e ] ≈ 2Nσ2

n

P − Na − 1

�
Ep

�
ΦH

a PHPΦa

�
P

�−1

=
Nσ2

n

P − Na − 1

�
ΦH

a Φa

�−1

(15)

The estimation error we seek is: ex = x − x̂a = Φahe Thus we
have an expression for the numerator of the performance metric:

E[eH
x ex] = tr

	
ΦH

a ΦaE[heh
H
e ]



≈ N

P − Na − 1
σ2

nNa (16)

In decibels the distortion is:

(Drz)dB ≈ −
�

σ2
nN

|x|2
�

dB

+

�
Na

P − Na − 1

�
dB

(17)

Thus, given P and knowledge of Na, we can evaluate the best
achievable reconstruction performance. In particular (17) and (12)
de ne how the best achievable reconstruction performance and the
minimum bit rate to achieve that performance vary with P .
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4. RESULTS

To illustrate these ideas we construct an example that is simple
enough to remove any problems of computational complexity but
rich enough to expose strengths and weaknesses in practical appli-
cation. The discrete-time signal in question consists of a small num-
ber, Nf , of complex phasors of unknown frequencies {ωi}Nf

i=1 and
unknown complex amplitudes {Ai}Nf

i=1 in additive Gaussian white
noise. Thus:

y(t) =

Nf�
i=1

Aie
jωit + n(t) (18)

where t is the integer time index and the frequencies are normal-
ized such that the sampling rate is unity, i.e.: 0 ≤ ωi < 1. The
signal/noise ratio of y(t) is: Sy =

�Nf

i=1 |Ai|2/E[|n|2]. The na-
ture of the signal (18) suggests that it could be represented in a
sparse manner using Fourier functions. However, by de nition of
(1) we can only accommodate a nite number of them, which sug-
gests a sampling processes in the frequency domain similar to the
discrete Fourier transform (DFT). For a data record of N -samples
i.e. : 0 ≤ t < N a phasor has the form φm(t) = ejΔωmt where
Δω = 2π

ND
and D is the oversampling factor, typically D = 2. For a

results shown in this section: a projection matrix P is drawn at ran-
dom; for each point on a graph measurements are made by averaging
over an ensemble of 20 runs at which: the frequencies {ωi}3

i=1 are
drawn from a uniform distribution; the power in the phasors in deci-
Bels are drawn uniformly in the range 0 to 50 dB; the phase shift of
each phasor is drawn uniformly over 360 degrees; thermal noise is
added to give an indicated signal to noise ratio and Gaussian noise is
added to model quantization noise.

Both basis and matching pursuit algorithms are available to
solve the problems of equations such as (1) and (2). Here we choose
the greedy forward regression technique, orthogonal least squares
(OLS) [8] because: (i) it is also based strongly on LS estimation and
thus it is a reasonably choice to validate the performance trade-off’s
predicted in section 4; (ii) it has been shown to function well in noisy
environments [11]; (iii) it has a convenient stopping criteria and thus
has some capability to self-select Na. The technique is described in
detail in [8] in the context of basis function selection for radial basis
function neural networks. However it is not restricted to that appli-
cation and it can be applied to any regression problem formulated as
per equation (1). It is a foward selection technique known as order
recursive matching pursuit (ORMP) in the approximation literature.
A convenient mechanism for stopping is to use an Akaike-type crite-
ria which provides a compromise between the number of regressors
Nr and the quality of the estimate as in [8]. The parameter χ used
in AIC is the critical value of the chi-squared distribution with one
degree of freedom for a given level of con dence. Chen et al. [8]
suggest a choice might be χ = 4 for a con dence level of ∼ 0.05.
However here we use values of 6 and 8 for the conventional and
compressive cases respectively. As a second stage of re nement we
prune the weights selected by the OLS/AIC combination based on an
estimate of the error covariance of the weights themselves. An ex-
plicit expression is given by (14) in terms of the variance of the noise
σ2

n and the expectation over random projection matrices, neither of
which we have access to in practice. If we replace the variance with
an estimate of the variance of the residuals and the expectation with
one realisation of its argument we obtain a crude estimate of the error
covariance:

E[hehe] ≈ 2eHe
�
ΦHPHPΦ

�−1

(19)
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Fig. 2. Sparse signal consisting of 2 phasors with dynamic range
50 dB; signal/noise of 50 dB: (a) rate distortion curves; (b) average
number of atoms versus rate.

The diagonal of the error covariance matrix contains the individual
variances associated with the estimate of each coef cient which can
be used to set a threshold for accepting of rejecting a particular co-
ef cient - the argument being that a particular coef cient estimate
needs to be signi cantly larger than its own estimation variance to
have any value. Once the weights have been pruned the LS estimate
of the remaining weights are recomputed.

For the initial result of Fig. 2 a sparse signal is used by re-
stricting the selection of frequencies to two that lie exactly on the
oversampled Fourier grid used for reconstruction. Thus we can say
precisely that Na = Nf = 2. The signal to noise ratio Sy is 50 dB,
N = 512 and P = 96. Fig. 2(a) shows how the performance in
terms of reconstruction MSE, Dr of (3), varies with the transmitted
bit rate in term of bits per element of the raw measurement vector
y. Quantization noise is simulated by adding appropriate levels of
Gaussian white noise to the elements of both y and z. The curve
marked “theory” shows the predicted lower bound on distortion (17)
varies with rate (12) as P increases. Two particular cases are high-
lighted: P = 96 and P = N = 512.

The curve labeled “conventional” is obtained by applying the
OLS algorithm with AIC and pruning directly to y after quantiza-
tion. At rst sight this may not appear to be a conventional algorithm
to apply to this problem but it is a useful benchmark of performance
as it will be close to the maximum likelihood estimate E[x|y] and
it is capable of exploiting the sparse nature of the signal. However
it is conventional in the sense that the rate is controlled simply by
allocating bits on a per element basis to y. The curve marked com-
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pressive is obtained by applying the same algorithm to the vector z
after quantization. In using AIC a value of χ = 6 is used for the
conventional case and χ = 8 for the compressive. The selection of
χ is a well known dif culty with AIC and the subsequent use of the
pruning technique alleviates most of the dif culties associated with
it. The curves labeled ”detected” on Fig. 2(b) indicate that the error
variances on the diagonal of (19) were used to set a thresold to accept
or reject elements of h i.e. a detection threshold for pruning. In all
cases examined here the detection threshold was set 10 dB above the
estimated error variance. It is clear that in the conventional case the
correct number of atoms have been chosen after pruning. AIC over-
estimates this values. For the compressive case, even with pruning,
an average of 3 rather than 2 atoms are selected.

It is clear that equation (12) reliably predicts the minimum rate
at which the best achievable performance is obtained for a given
value of P : 1.75 bits/sample at P = 96 and 9.33 bits/sample at
P = N = 512. Equation (17) provides a reasonable estimate of
the minimum distortion that is achievable at this bit rate and above
for a particular value of P e.g.: -64 dB for P = 96 and -71 dB for
P = N = 512. At rates below the minimum the performance de-
grades monotonically as the level of the quantization noise swamps
the additive noise.
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Fig. 3. Compressive signal consisting of 2 phasors with dynamic
range 50 dB; signal/noise of 50 dB: (a) rate distortion curves; (b)
average number of atoms versus rate.

To warrant the use of a compressive sensing system we must
have some degree of con dence from the outset that a basis or frame
such as Φ exists which permits a sparse of compressive representa-
tion of the observable vector y. In addition we might need an esti-
mate of Na to assess what degree of compression could be achieved.

One way of way of addressing both of these issues is to apply the
conventional scheme described above to typical signals to provide
an estimate of Na. The OLS/AIC plus pruning technique provides
reliable estimates of Na as shown above. This estimate can then be
used in equation (17) to predict the minimum distortion that can be
achieved against P and hence rate.

For Fig. 3, the two phasors can have any possible frequency and
hence will not fall exactly onto the Fourier grid. The signal is thus
no longer sparse with respect to the frame Φ but rather compressive
but admits a sparse approximation. From Fig. 3(b) we conclude that
a value of Na = 12 is suf cient to represent the signal under these
conditions as this is the value used for the conventional system after
pruning. This value is used for the theory curve of Fig. 3(a). In
common with Fig. 2(a), equation (17) predicts the lower bound on
performance at a particular rate.

5. SUMMARY AND CONCLUSIONS

Because the expectation of the matrix PPH is diagonal, the signal
to noise ratio before and after projection are approximately the same.
Hence the number of bits required to extract the maximum perfor-
mance from each sample of y and z is the same. Having done the
projection we are left with a standard least squares parameter esti-
mation problem but with fewer ,i.e. P , observations than the original
problem, i.e. N , and hence degraded performance. LS convergence
analysis can be applied to this problem to relate distortion to P and
hence rate.
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