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ABSTRACT

Recovering a sparse signal from insufficient number of measure-
ments has become a popular area of research under the name of
Compressed Sensing or Compressive Sampling. The reconstruc-
tion algorithm of compressed sensing tries to find the sparsest vector
(minimum lp-norm) satisfying a series of linear constraints. How-
ever, lp-norm minimization, being a NP hard problem is replaced by
l1-norm minimization with the cost of higher number of measure-
ments in the sampling process. In this paper we propose to mini-
mize an approximation of /o-norm to reduce the required number of
measurements. We use the recently introduced Correntropy Induced
Metric (CIM) as an approximation of /o-norm, which is also a novel
application of CIM. We show that by reducing the kernel size appro-
priately we can approximate the [p-norm, theoretically, with arbitary
accuracy.

Index Terms— Compressed Sensing, Correntropy Induced Met-
ric, lp-norm, Gradient Descent.

1. INTRODUCTION

Recovering a sparse signal from insufficient number of measure-
ments has become a popular area of research under the name of com-
pressed sensing or compressive sampling (CS) [1][2][3]. In Nyquist
sampling scheme a signal is sampled uniformly. After sampling, the
signal is often compressed to reduce storage requirement. In com-
pressive sampling, however, the idea is to sample the signal in a way
that it is already compressed. To achieve this instant compression,
CS takes advantage of the sparsity or compressibility of the signal;
analogous to Nyquist sampling that exploits the band-limitedness of
the signal. The sampling scheme of CS involves projecting the orig-
inal signal onto a set of fewer number of bases, than the actual num-
ber of bases needed to represent the signal, and the reconstruction
scheme of CS involves finding the sparsest signal (with minimum lo-
norm) satisfying a series of linear constraints. /o-norm minimization,
however, being a NP hard problem, is not solved. Instead its closest
linear counterpart, /1 -norm, is minimized. /;-norm minimization in-
deed achieves a near perfect solution as that of [o-norm. However,
the cost of having simpler solution is paid by increasing the number
of measurements needed for exact reconstruction. It has been shown
that the required number of measurements can be reduced if any -
norm with 0 < p < 1 is minimized [4]. The required number of
measurements become lesser as p is decreased. Minimizing [,-norm
is a nonconvex optimization problem. In this paper, we propose to
solve an approximation of [p-norm to reduce the required number of
measurements.
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We use the Correntropy Induced Metric (CIM) as an approxi-
mation of [p-norm [5]. The idea of CIM originates from the novel
idea of correntropy which is a generalization of correlation [5]. The
definition of correntropy allows us to induce a Reproducing Kernel
Hilbert Space (RKHS), called VRKHS, corresponding to the input
space. The correlation function in VRKHS is referred to as cor-
rentropy in the input space and the Euclidean distance measure in
VRKHS is referred to as CIM in the input space. As the mapping
between the original input space and VRKHS is nonlinear, CIM is a
nonlinear distance measure in the original space. Due to the inher-
ent nonlinearity, CIM saturates if two points are far apart in the input
space. This feature makes CIM insensitive to outliers and makes it
an appropriate choice for regression problems involving impulsive
noise [5]. In this paper we discuss [p-norm approximation as a novel
application of CIM.

2. COMPRESSED SENSING

Let s € RP be a real valued, finite length, one dimensional, dis-
crete signal of length D. We represent the signal by a column vec-
tor [s],,;. Suppose that this signal is sparse in a particular do-
main ¥ € RP*P ie. s can be completely represented by only M
(M < D) nonzero projections on a set of orthonormal bases ¥. If
the representation of s in that sparse domain is @ € R” then [0]

Dx1
is a column vector with only M nonzero entries and s = ¥76.
[®], p is the sparsifying basis whose columns are the bases that

captures the sparsity of the signal. ()T is the transpose operation. If
the signal is sparse in time domain then ¥ = I.

The sampling scheme of CS projects the signal s on a set of new
bases ® € RP*N where ® and W are incoherent i.e. any col-
umn vector {¥; j—12... p}of ¥ can not be sparsely represented
by the column vectors {®; ;=1,2,. ~} of ® and vice versa [3].
The number of such bases (V) are much smaller compared to the
actual number of bases (D). We express the sampling scheme as
RY 5y = ®%s where [y] N1 18 a column vector of measure-
ments and [®],,  , is the measurement matrix whose columns are
the measurement bases. The incoherence between the sparse bases
and the measurement bases ensures that reconstruction is possible
even from less number of measurements. A simple way to assure
this property is to choose the elements of ® from Gaussian distrib-
ution i.e. & ~ N (O, 02). For instance, when the sparsity basis is
W = T then it is easily visible that ® and ¥ are incoherent. For
such combination of measurement matrix and basis matrix it can be
shown that N > c¢M log (D) < D number of measurements is
sufficient to assure exact reconstruction with very high probability
[1]. cis a constant. Another way of constructing @ is to choose the
elements from Rademacher distribution. Rademacher distribution is
a discrete probability distribution which has equal chance for either
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The sampling part assures that the reconstruction is possible but
the inverse problem is ill posed as we have fewer number of measure-
ments (V) than unknowns (D). This problem is tackled by using the
sparsity of the signal [3]. The reconstruction algorithm try to find the
sparse signal 0 instead of s. The classical approach of solving such
ill posed inverse problem is to find the minimum energy solution i.e.
to minimize the least square cost function. Let @ = ¥® then the
solution can be expressed as

0 = arg min ”0'”2 such that 'y = e’y (1)

(See Section 4 for the definition of [|.||,,).Though this quadratic pro-
gramming problem has a closed form solution, the solution unfor-
tunately is not the sparsest one. The sparsest solution is guaranteed,
however, if we minimize the cardinality of the solution. The solution
in this case can be expressed as

0 = arg min ||0'||0 such that y = e’y 2)

But unfortunately this problem is NP hard and takes a long time to
solve. Therefore instead of minimizing lo-norm, its closest linear
counterpart /1-norm minimized. /;-norm minimization is a convex
optimization problem which can be solved using a linear programing
method known as basis pursuit whose complexity is O (DB) [3].
The solution, therefore, is given by

0 = arg min HO'H1 such that y = e’y 3)

Surprisingly the signal can be reconstructed with very high accu-
racy by solving the /; minimization problem provided we have suf-
ficient number of measurements N > c¢M log D [1]. In practical
cases, however, N > 4M number of measurements gives suffi-
ciently accurate result [2]. Recently Chartrand has shown that we
can also achieve a near perfect solution by minimizing the /,,-norm
(0 < p < 1). The sufficient number of measurements becomes
lesser as we decrease p [4]. Minimizing l,-norm with 0 < p < 1
is, however, a nonconvex optimization problem and it becomes dif-
ficult to control as we decrease p. Chartrand has shown results for
p = 0.5, after which the parameters for the gradient descent method
become difficult to tune [4].

In this paper we reconstruct the signal by solving the following
optimization problem

60 = argmin CIM (0', O) such thaty = @76’ “)

(See Section 3 for the definition of CIM). Since we use CIM as an
approximation of lp-norm, we expect to reduce the number of mea-
surements further without degrading the reconstruction accuracy.

3. CORRENTROPY AND CIM

The correntropy of two vectors (or two one-dimensional discrete sig-
nals)

X = [z1,22,...,2N]
Y = [y17y2""’yN:|
is defined as
1 N
VXY)= > k(i y) (%)
i=1

where « (.) is a reproducing kernel. We use the Gaussian kernel,

1 |z —y|?
V2o P (‘i) ©

H(:Z,‘,y):,‘{("l,‘—y): o 202
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CIM sudface with o=0.4

Fig. 1. CIM surface plot showing to distince regions; Euclidean
(quadratic shaped region) and rectification (flat surface). The width
of the convex Euclidean region is proportional to the kernel size.

where o is the kernel size. « (.) satisfies the Mercer’s theorem and
therefore there exists a nonlinear transformation ® : R — R from
the input space to a RKHS F where the inner product produced
equals the evaluation of the kernel i.e.

(@ (2), @ (y)F = #(2,9) ™

We use this nonlinear transformation to map X and Y to
X =

Yy =

[®(x1),® (x2),..., 2 (zN)] ®)
@ (1), ® (v2), ...,  (yn)]

Then the Euclidean distance between X and Y in F is given by [5]

N=

{(;?_?)T (;?_17)}5 — VAN {k(0) - V (X, Y)}

Ignoring the constant term v/2N in the expression, CIM is defined
as

CIM (XY) = {r(0) = V (X,Y)}* ©)
Due to its relation with correntropy V (X, Y’), this nonlinear metric
is called the correntropy induced metric. CIM is a nonlinear met-
ric in the input space. This metric divide the space in three regions
named Euclidean region, Transition region and Rectification region
[5]. In the Euclidean region CIM behaves as l2-norm (convex func-
tion), in transition region CIM behaves as [;-norm and in rectifica-
tion region CIM behaves like [o-norm (nonconvex function) (Figure
1). The width of the convex region is proportional to the kernel size.
We will use this feature of CIM later.

4. CIM AS [,-NORM APPROXIMATOR

The [,-norm of a N dimensional vector X = [z1, z2,...,xn] for
any 0 < p < oo is defined as

b
11, = (£l (10

lo-norm and [.o-norm are defined separately. In the limiting case
p — 0, lo-norm (Referring o as "norm" is a slight abuse of termi-
nology), is defined as the number of nonzero entries in the vector
ie.

I X1y = card{x; : x; # 0} (11)



where card is set cardinality [6].

Minimizing lp-norm is a NP hard problem [6]. Therefore /o-
norm is often approximated by continuous functions. A popular ap-
proximation used by many authors is

N
NXHON'Z%{l—eXP(—akWD} (12)

where the parameter « has to be chosen by the user. For practical
purposes « is either set to some finite value like 5 or is increased
slowly throughout the optimization process for better approximation
[6]. Another approximation suggested by Weston et al. is given by

N
1XTlo ~ 22 log (Jzil + €) (13)

where € is a small positive number. If Xy is the solution achieved by
minimizing (11) and X; is the solution achieved by minimizing (13)
then Weston et al. has shown that

1
il < 1ol + 0 (- ) (14)

provided, the absolute value of the nonzero entries of X are bounded
below by a small positive number J, i.e. by making ¢ — 0 we
can get arbitrarily close to the [p-norm solution. In this paper we
propose to use CIM as an approximation of lo-norm. Therefore, we
approximate [o-norm by

IX]l, ~ CIM(X,0)= \/n 0) - & 3 5 (.0)

_ \/*‘Jifmi{1_exp ()} o9

We simplify the expression by removing the square root opera-
tor. Thus the approximation is given by

Xt~ one (.0 = S0 S L e (- 25)} a9

=1

It can be shown that if |x;| > § Vi : z; # 0 then by making o — 0,
we can get arbitrarily close to the lo-norm. The proof is very similar
to the one described by Weston et al. See the appendix for detailed
derivation.

Notice that the definition of CIM does not restrict the kernel
% (.) to Gaussian kernel. Another possible kernel that can be used is
a Laplacian kernel given by

(0%
w(z,y) = k(e —y) =5 exp(~alr —yl) (17)
If we use this kernel then the approximation of lo-norm takes the
form of equation (12).

5. NUMERICAL RESULTS

We test the performance of [;-norm minimization, [,-norm mini-
mization (0 < p < 1) and CIM minimization on a real valued sparse
sequence s. We use D = 512 and M = 16. The positions of the 16
nonzero entries were selected randomly from the available 512 posi-
tions with equal probability and the values at those points were gen-
erated from a zero mean, unity variance Gaussian distribution. The
number of measurements N were varied from 32 (2M) to 96 (6M)

3847

with stepsize 4 (M/4) i.e. N € {32,36,...,96}. For each values
of N, 25 trials were performed. The reconstruction was considered
successful if the [2-norm of the error between the original sequence
and the reconstructed sequence (say s, is less than 1072 i.e. suc-
cessful reconstruction implies ||s — s, ||, < 107%. For each N the
probability of success was determined numerically by dividing the
number of successful reconstructions by the total number of trials.
We use the /1 -magic package available online for /1 -norm minimiza-
tion [7]. For [1-norm minimization, the elements of the measurement
matrix were generated from a zero mean, unity variance Gaussian
distribution and then the matrix was orthonormalized as shown in
the /1 -magic package. For l,,-norm (0 < p < 1) and CIM minimiza-
tion the elements of the measurement matrix were chosen from the
Rademacher distribution as we observed better reconstruction with
this. The parameters for /;-norm minimization were set to the de-
fault values used in the examples shown in the package.

For CIM minimization, we use the constrained gradient projec-
tion method as described in [8]. We first compute the gradient vector

le] __|oCiM(6,0) 0CIM(6,0) oCIM(6,0)
e T T
(18)
where ,
0CIM(6,0) x(0)0; 0;
00; = Dg? ox 202 (19)
and then project the gradient onto the null space of @7
—1
g— {I e (@Te) @T} g (20)
where [I] 5 is the identity matrix. We update 6 using
041 =60: — n‘i @1

gl

where 7 is the learning rate parameter and ¢ is the iteration number.

0o = (G)T) - y where the inverse is a pseudoinverse; i.e. the gra-
dient descent process starts from the minimum energy solution of
the linear constraint equations.

A very low kernel size creates local minima and makes the gra-
dient descent process unstable. To tackle this problem we use the
kernel annealing method as proposed in [9]. We vary the kernel size
exponentially throughout the experiment starting from a large value
(0max = 5) to a small value (0'min = 0.001) in every 100 iterations
using the function

O = Omax €XP (—%) + Omin (22)

where T is the total number of iterations and ¢ is the current iter-
ation. The parameter ( is the exponential decay rate. We choose
T = 10000 and 8 = 10. Though lp-norm is a nonconvex opti-
mization problem, CIM minimization can be solved as a convex op-
timization problem by kernel annealing. We start with a large kernel
size to ensure that the initial guess of the solution lies in the convex
Euclidean region. As we go closer to the sparse solution we keep
reducing the kernel size to ensure a lp-norm solution. Though we
decrease the kernel size we still expect to be in the convex region as
the solution is sparse.

After changing the kernel size we adapt the best step size through
a line search. We use the steepest descent method for line search. We
select the stepsize 7 that gives the minimum CIM (0441, 0).



Comparisons among /-norm, /, - -norm and CIM reconstruction
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Fig. 2. Performance of /1 -norm minimization, lo.75-norm minimiza-
tion and CIM minimization in reconstructing compressed signal.
The original signal length is D = 512 and has sparsity M = 16.

For l,-norm minimization we select p = 0.75. This value is
chosen as the gradient descent process in easier to control with p >
0.5 and the number of measurements needed for p = 0.75 is as low
as that for p = 0.5 [4]. We use the same gradient descent method
with same parameter values. We start the experiment with stepsize
1 and select the best stepsize 7, using same line search method, that
gives minimum ||@¢+1 |, ;5 in every 100 iterations.

Figure 2 shows the performance of all three reconstruction schemes.

The figure shows improvement in performance over both /;-norm
minimization and [y 75-norm minimization when we use CIM mini-
mization. We observe that under the described experimental settings
CIM minimization requires around 41/ number of measurements
to give a 100% reconstruction probability whereas ;-norm mini-
mization and /o 75-norm minimization require around 6\ and 5M
number of measurement respectively. Moreover we notice that exact
reconstruction is possible even with as low as around 2/ number of
measurements when we use CIM minimization.

CIM as an approximate [o-norm minimization performs better
than both [1-norm and l¢.75-norm minimization in terms of required
number of measurements. But the computation involved in minimiz-
ing lo.75-norm and CIM are nearly the same and are much higher
that that of /;-norm minimization. We use a simple gradient descent
method and kernel annealing technique to minimize CIM. As men-
tioned earlier, CIM is a nonlinear function and it has many local
minima. Therefore there still lies possibility for the gradient descent
to converge in the local minima and to give improper result. Also the
CIM approximation is valid when the values of the nonzero entries
in the signal are greater than a threshold (See appendix). Therefore
if the signal contains very low values then CIM minimization fails
to reconstruct properly.

6. SUMMARY

In this paper we show a novel way to reconstruct in compressive
sampling using also a novel metric the CIM to reduce the number of
measurements. The future works include using other sophisticated
optimization tools for CIM minimization and comparing CIM with
other lp-norm approximators.

A. PROOF OF CIM AS [,-NORM APPROXIMATOR

Let the Xg be the solution we get by minimizing the lp-norm and X be the
the solution we achieve by minimizing CIM. Then

CIM (X;,0) < CIM (Xo,0)

N (Xl)? N (XO)]Z
= - > —
J§1 P < 202 - ]';1 P 202
N, (x)? N (x)?
= > exp (— 3 2] + > exp | — 5 2]
J=1, (X;);=0 4 3=1, (X1);#0 ‘7

N (Xo)? N (Xo)?
£ en(-G2)r 8 en(-Gw
=1, (X0);=0 20 =1, (Xo0);#0 20

N (X1)3
= (N—=IXullp) + > exp [ ———
=1, (X),;#0 20

v

N (X0)3
> (N-IXoll) + X exp|-——
J=1, (X0);7#0 o
N (X))2
= I Xullo - > €xp < 3 2J
3=1, (X1);#0 7
N (X0)?
< IXollg— X ew ( —
3=1, (X0);#0 o

= IXllo — 1 Xolly <

N (X1)?
> exp <— o5
J=1, (X;);#0 o

. <_<X>>

=1, (X0);#0 202

Now if we assume that ‘(Xo) ,

J1(Xo),#0 (Xl)mxl)j#o‘ >0
where 9§ is a small positive number then we can choose a o to make
the right hand side of the equation arbitrarily close to zero. Therefore
we arrive at the condition given by || Xoll, < [ Xil, < | Xoll, +

v ; v > 0 where v is small positive number.
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