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ABSTRACT

In this paper we explore several fundamental bounds for a

compressive sampling system which uses the Fourier sam-

pling algorithm of Gilbert et al. Beginning with the theoreti-

cal bounds on the number of samples necessary to reconstruct

high fidelity approximations of input signals, we refine those

theoretical bounds with empirical values in several practical

input models. We show that the performance is consistent

with traditional sampling systems, and, in certain cases, much

better.

Index Terms— analog-digital conversion, algorithms

1. INTRODUCTION

Recent results in compressive sampling [1, 2, 3, 4, 5, 6] demon-

strate that it is theoretically possible to record a few linear ob-

servations of a signal and, from those measurements, nearly

reconstruct the signal. The number of observations is con-

siderably smaller than the extrinsic dimension of the signal if

the signal is highly compressible. The Fourier sampling algo-

rithm of Gilbert et al. [6] presents itself as an attractive, poten-

tially practical algorithm for carrying out a type of compres-

sive sampling—it yields fast algorithms (exponentially faster

than those in [1, 2]) and both the sampling pattern and the

reconstruction algorithm are easily implementable in hard-

ware [7].

While the Fourier sampling algorithm is attractive in the-

ory, suggests novel analog-to-digital converter (ADC) designs

that defy the state-of-the-art [7], and in implementation ex-

hibits good empirical performance [8, 9], we do not yet un-

derstand its fundamental limitations, nor do we have a com-

plete picture of its performance under both signal and hard-

ware nonidealities. We seek to identify these limitations and

to characterize the performance in this paper.

To complete the performance profile of the Fourier sam-

pling algorithm, we seek to determine the number of samples,

the number of bits per sample, and the total number of bits we
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need to recover a signal. This is the first goal of our paper. Al-

though theoretical results for both compressive sampling-type

algorithms and the Fourier sampling algorithm are expressed

in terms of the �2 error or MSE, ‖x− x̂‖2, between the orig-

inal signal x and its reconstruction x̂, this measure is not the

standard metric for evaluating ADC systems. It is more nat-

ural to use signal-to-noise ratio (SNR). It is more useful to

express the fundamental bounds as a tradeoff between SNR

of recovery and the total bit budget, the sample rate, and the

sample precision. This is our second major goal of this paper.

We present a combination of theoretical results along with

a suite of empirical results for several realistic signal scenar-

ios, consisting of a signal of interest and various types of

interference. We determine several fundamental theoretical

bounds for these scenarious. In the remainder of this section,

we review the Fourier sampling algorithm and detail the sig-

nal scenarios. In the second section, we prove several funda-

mental theoretical bounds on the Fourier sampling algorithm.

We then extend our analysis to the SNR of the signal recovery

in Section 3. Finally, we illustrate these relationships empiri-

cally in Section 4. We conclude in Section 5 with a discussion

and interpretation of the results.

1.1. Review of Fourier sampling algorithm

Let us detail the theoretical guarantees of the algorithm in a

discrete setting. Let x be a discrete-time signal of length N .

Suppose that x consists of a superposition of m pure tones.

Gilbert et al. [6] have developed an algorithm that uses at most

m poly(1/ε2 log N) space and time and outputs a representa-

tion x̂ which consists of those m pure tones. In the case that

x contains some noise, the MSE of the output representation

is no more than (1 + ε) times the energy of the noise. The

samples are chosen at random (with some structure) and, for

each signal, with high probability, the algorithm successfully

finds a good compressed representation of the signal. We em-

phasize that the algorithm returns a short list of significant

frequencies, not the entire original signal nor its spectrum.

We can view this list as a compressed or denoised version of

the signal.

The algorithm iteratively constructs an approximation to

the signal by maintaining a list of frequency and coefficient
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pairs, thus representing the approximation implicitly. Each

loop of the iteration consists of three steps: (i) identifying

candidate dominant frequencies, (ii) estimating the coefficients

associated with the candidates, and (iii) updating the previous

approximation. The identification step uses a random filter-

bank to find significant frequencies in the residual signal. It

does this via group testing—it finds each bit of dominant fre-

quencies, starting with the least significant bit. Then the es-

timation step uses a related random filterbank to estimate the

coefficients.

1.2. Signal models

We frequently encounter signals in practice which are com-

prised of a signal of interest (SOI) and some sort of interfer-

ence. Let us denote our received signal as x = xS + xI ,

a superposition of the SOI xS and the interference xI . Be-

cause compressive sampling is a paradigm in which the mea-

sured signals are highly compressive, we assume that the SOI

xS is sparse in the Fourier dictionary Ψ; that is, xS is well-

approximated by a short linear combination of pure tones.

With this model, we can classify the interference xI as one

of two signal types:

1. coherent interference: xI is also sparse in Ψ, or

2. incoherent interference: xI is not sparse in Ψ.

To simplify our theoretical analysis, we model incoherent in-

terference as Gaussian white noise ν with standard deviation

σ that is restricted to the space spanned by the frequency sup-

port of xS . We do not use this restriction for empirical per-

formance evaluation. We assume that we observe the signal x
by sampling it and that those samples are quantized (by ana-

log hardware). Once we have quantized those samples, we

assume that any postprocessing algorithm has access to full

double precision. That is, we do not use internal quantization

in postprocessing.

2. THEORETICAL RESULTS

In this section, we prove several fundamental lower bounds

on the total number of bits and samples needed to recover a

signal.

2.1. Coherent noise

Let us define F , the Interference Factor, as the logarithm of

the ratio of the interference maximum amplitude to the SOI

maximum amplitude.

F = 10 log10

(
‖xI‖∞
‖xS‖∞

)
.

While the original Fourier sampling algorithm uses nonadap-
tive samples, we note that there are many situations in which

it may be feasible (and desirable) to use adaptive samples.

The number of rounds of adaptivity is F , the interference fac-

tor. This result generalizes to capture the total number of bits

needed even in a nonadaptive setting.

Proposition 1. Let x = xS + xI be a superposition of two
pure tones, a powerful interferer xI and a relatively weaker
signal of interest xS . Using adaptive samples, the Fourier
sampling algorithm can recover xS with a constant number
of bits of precision per sample. The number of rounds of adap-
tivity is F . More generally, the total number of bits which the
Fourier sampling algorithm needs in order to estimate xS is
F , which can be gotten through any tradeoff of number of
samples with precision of samples.

Proof. Sketch. Our algorithm proceeds by recovering the in-

terferer, subtracting it off, then recovering the SOI. Our al-

gorithm proceeds in a greedy fashion—it first finds a coarse

approximation to the interferer, subtracts off the coarse ap-

proximation, then finds a better approximation to the inter-

ferer, etc., until the remnants of the interferer is of amplitude

comparable to that of the SOI.

We now observe that a constant number of bits (say, 2 bits)

is sufficient, if the samples can be made adaptively. Assum-

ing the interferer dominates the SOI, our goal is merely to get

a coarse approximation to the interferer that leaves behind an

interferer whose power is reduced by, say, the factor 1/4. It is

easy to see that 2 bits suffice for this. We then need to synthe-

size the current approximation to the interferer with precision

depending on the iteration, and growing to F bits. Finally, we

subtract the current coarse approximation from the received

signal, and iterate.

We need not change much of the above analysis for multi-

ple tones in either the SOI or the interference (or both). With-

out loss of generality, we may assume that the SOI contains a

single pure tone and the (coherent) interference consists of �
tones. The sufficient bit rate is O(log �− F ) in this case.

2.2. Incoherent noise

In this subsection, we give theoretical bounds for the num-

ber of samples and number of bits of precision required by

the Fourier sampling algorithm to recover a single sinusoid

amidst Gaussian noise. We note that the analysis is similar

for multiple tones and omit it for brevity. Suppose we have

a signal x = xS + ν consisting of single sinusoid, xS , at

frequency ω and Gaussian noise ν that is white on the space

orthogonal to ω. We assume that the sinusoid has amplitude

1; let σ denote the variance of Gaussian noise that inhabits

all frequencies except ω. The goal is to determine ω and the

amplitude.

Proposition 2. Given a signal of the form x = xS + ν, the
Fourier sampling algorithm can recover ω with O(σ2) sam-
ples with log σ bits of precision each.
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Proof. Sketch. Before we prove the proposition, we find the

appropriate lower bound on the number of samples necessary

to separate a pure tone from Gaussian noise. Because these

types of lower bounds are standard, we simply state the result.

Lemma 3. We need Ω(σ2) samples to distinguish a pure si-
nusoid plus noise from non-constant Gaussian noise alone,
even if the frequency of the sinusoid is known.

We continue with the sketch of the proposition. Our al-

gorithm will make approximately n = σ2 measurements, and

average them. Our algorithm begins by simulating h, the sig-

nal x convolved with an impulse-response that is equal to 1/n
on its support of size n. Note that, if the samples have infinite

precision, then we can arrange that the ω’th coefficient of h
has at least 2/3 the energy of h. This is sufficient for the rest

of the algorithm to proceed. The question now is how many

bits of precision are necessary for this.

We assume that the quantizer rounds up or down, whichever

case is worse. Regardless of the rounding procedure, we need

precision ±1/2. The average of several such samples is also

in the range ±1/2, which is small compared with the ampli-

tude of the ω’th coefficient. Since sample values can be as

large as σ, we need log(σ) bits of precision in our quantiza-

tion.

3. RECOVERY METRICS

To characterize the fundamental performance of the Fourier

sampling algorithm beyond the theoretical lower bounds, we

need a metric for the quality of the reconstructed signal. Our

strategy for assessing the quality of the output is as follows. If

the received signal has coherent interference, we reconstruct

both the SOI and the interference; if it has incoherent inter-

ference, only the SOI. We eliminate the coefficients for the

interference and refer to the remaining coefficients as those of

the SOI. We call this oracle reconstruction or reconstruction

of the SOI with oracle knowledge of the interferer. Finally,

we compare the fidelity of the reconstruction x̂s with that of

the original SOI xs. The performance bounds we obtain with

this procedure are the same as those one would obtain for an

ideal interference rejection system. More formally, the re-
construction SNR (SNRs), assuming oracle reconstruction

of the SOI, is

SNRs = 10 log10

(
‖xs‖2

‖xs − x̂s‖2

)
dB.

This is the metric we report in our empirical evaluation.

Let us express the theoretical error guarantees of the Fourier

sampling algorithm in terms of SNRs. Let xk denote the top k
significant frequencies in the signal x (regardless of the model

of the signal). First, we note that if we have any noise μ in the

samples themselves (e.g., from quantization), we modify the

original result to obtain ‖x−x̂‖2 ≤ (1+ε)‖x−xk+μ‖2. Note

that x− xk for incoherent noise is simply ν and for coherent

noise x−xk = 0. For coherent noise, the reconstruction SNR

is bounded below by

SNRs ≥ 10 log10

(
‖xs‖2

(1 + ε)‖μ‖2

)
= 10 log10

(
2B‖xs‖2

(1 + ε)
√

M

)

where B is the bit rate and M is the total number of samples

and where we use a standard approximation for quantization

noise. This bound implies that as we increase the bit rate,

we increase the SNR but that we will suffer some degrada-

tion from the ε approximation to the true signal. This is a

small additive decrease in the SNR compared to a traditional

system. We note that, for a fixed bit budget, we suffer more

degradation the more samples M we take.

For incoherent interference ν and oracle reconstruction,

the reconstruction SNR is bounded below by

SNRs ≥ 10 log10

(
‖xs‖2

(1 + ε)‖ν + μ‖2

)
.

Again, we obtain a small additive decrease in the SNR be-

cause of the ε approximation. In both cases, we suffer the

usual degradation in traditional sampling systems in SNR from

measurement noise and from interference.

4. EMPIRICAL ANALYSIS
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(a) SNR vs. F (B = 6 bits/sample)
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Fig. 1. SOI with coherent interference: 3 pure tones each in

SOI and interference, signal length 1024.

To verify empirically our theoretical analysis, we build

an experimental testbed. We generate two types of signals,

a signal of interest with coherent interference and one with

incoherent interference. We model the SOI in each case as a

superposition of pure tones (with each randomly chosen fre-

quency on the Nyquist grid). We do the same for the coherent

interference and scale each randomly chosen tone by the in-

terference factor. For incoherent interference, we use additive

white Gaussian noise. To test the fidelity of the reconstruc-

tion algorithm, we generate a signal, sample it on the random

sample set, quantize each sample, and then use the quantized
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(b) SNR vs. B (σ = 0.2)

Fig. 2. SOI with incoherent interference: 3 pure tones in SOI,

signal length 1024.

samples in the algorithm to reconstruct the SOI. Using ora-

cle knowledge of the interference, we calculate the SNR of

the reconstructed signal as a function of the interference fac-

tor (for coherent interference) and of the noise variance (for

incoherent interference). For both types of interference, we

also calculate the reconstruction SNR as a function of the bit

rate. We vary the number of tones in the SOI (and in the co-

herent interferer), the noise variance, the interference factor,

and the bit rate for each signal type. We sample the signal

at a high enough rate to guarantee successful reconstruction

over 95% of the time. In order to validate our approach and

to understand its relative performance, we compare the recon-

struction SNR to that obtained by a straightforward sampling

and reconstruction algorithm we refer to in Figures 1 and 2

as Shannon sampling. In this case, we sample the signal at

Nyquist rate, quantize the samples, and compute a DFT. We

also use oracle knowledge of the interference to compute the

reconstruction SNR.

We observe that the Fourier sampling algorithm’s perfor-

mance is comparable (if not better at times) to the Shannon

sampling. It shines when the signal is especially noisy as it

returns a denoised version of the SOI, instead of a complete

spectrum. Furthermore, because the algorithm uses fewer
samples than Shannon, it suffers less of a degradation in SNR

from quantization noise. We note that the performance is sim-

ilar when the pure tones in the SOI do not fall on a Nyquist

grid, but instead, are well-approximated by a few pure tones

on the grid. For the sake of space, we do not show these fig-

ures. Figures 1 and 2 are example figures for one choice of

number of tones or bit rate (depending on the figure) but our

complete set of experiments demonstrate comparable perfor-

mance, as long as we have enough samples. Again, we omit

this data for brevity.

5. CONCLUSIONS

We prove several fundamental lower bounds for the Fourier

sampling algorithm and demonstrate that its empirical per-

formance is not only consistent with our theoretical analysis

but also competitive with traditional sampling systems. These

lower bounds not only provide a characterization of the algo-

rithm but also help to optimize the hardware design of novel

ADCs and to assess their practical limitations.
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