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ABSTRACT

In this paper a new adaptive leakage factor variable tap-length

learning algorithm is proposed. Through analysis the con-

verged difference between the segmented mean square error

(MSE) of a filter formed from a number of the initial coeffi-

cients of an adaptive filter, and the MSE of the full adaptive

filter, is confirmed as a function of the tap-length of the adap-

tive filter to be monotonically non-increasing. This analysis

also provides a systematic way to select the key parameters

in the fractional tap-length (FT) learning algorithm, first pro-

posed by Gong and Cowan, to ensure convergence to permit

calculation of the true tap-length of the unknown system and

motivates the need for adaptation in the leakage factor during

learning. A new strategy for adaptation of the leakage factor

is therefore developed to satisfy these requirements with both

small and large initial tap-length. Simulation results are pre-

sented which confirm the advantages of the proposed scheme

over the original FT scheme.

Index Terms— Adaptive signal processing, Adaptive fil-

ters, Variable tap-length, Adaptive leakage factor

1. INTRODUCTION

As a key parameter, tap-length plays an important role in the

design of adaptive filters based on the LMS algorithm, which

has been utilized in a wide range of applications [1, 2, 3], as a

consequence of its simplicity and robustness. Since the con-

cept of variable tap-length in adaptive filters was initially pro-

posed in [4], many related results [5]-[10] have been reported.

The algorithm in [4] compares the current MSE of a deficient

tap-length adaptive filter to the pre-estimated minimum MSE

for a specific tap-length to improve convergence rate. In [5],

a variable tap-length algorithm with a precalculated time con-

stant is proposed. However, both algorithms were initial at-

tempts at enhancing the convergence behavior of the MSE in

an environment where the tap-length of the system is known.

In time-varying scenarios, where the system to be identified

has changing length, Riera-Palou et al. presented an algo-

rithm which relies on the concept of partitioned segments,

the number of which must be carefully chosen dependent on

application [6]. During learning in variable tap-length adap-

tive filters, when the adaptation noise is low, the “wandering”

problem is encountered, that is, the tap-length wanders within

a range that is always greater than the optimum tap-length,

[7]; an issue we address in this work through careful selection

of the leakage factor for the FT algorithm. The algorithms in

[8] were presented to make the estimated tap-length converge

to the optimum tap-length in the mean. However, both al-

gorithms suffer from slow tap-length convergence in certain

scenarios.

Gong and Cowan [9] introduce a low-complexity FT algo-

rithm based on instantaneous errors, which obtains improved

convergence properties. In [10], a variable tap-length nat-

ural gradient blind equalization algorithm based on the FT

algorithm is proposed, which gives a good compromise be-

tween steady-state performance and computational complex-

ity. In this paper, an analysis of the converged fractional

tap-length function is introduced, which provides the moti-

vation for the novel scheme based on the FT algorithm. To

facilitate this analysis, we assume that the final element of

the unknown filter is significantly different from zero. In the

proposed algorithm, a variable leakage factor based on the

squared smoothed error is used to improve the convergence

behavior of the fractional tap-length as compared to the orig-

inal FT algorithm.

The remainder of this paper is organized as follows. The

analysis of the fractional tap-length function is described in

section 2. The proposed algorithm and its motivation are in-

troduced in section 3. A simulation that confirms the analysis

and advantage of the presented algorithm as compared with

the original FT algorithm is given in section 4. Section 5 of-

fers conclusions.

2. BACKGROUND

In the case of system identification, a reference data measure-

ment d(i) is observed from the model:

d(i) = uiwo + v(i) (1)

where ui is a 1×M row input vector, v(i) indicates the zero-

mean noise, wo denotes an unknown M×1 column tap vector
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that we intend to estimate and i denotes the iteration index.

All quantities are assumed to be real valued for convenience

of development but extension to complex values is straight-

forward. It is well known in [1, 2, 3] that the LMS algorithm

computes wi via

wi = wi−1 + μuT
i e(i) (2)

where μ is the step-size of the tap weight update, [·]T denotes

the vector transpose operator and e(i) is the difference be-

tween the reference data and the output of the adaptive filter,

defined as,

e(i) = d(i) − uiwi−1 (3)

When the tap-length of the adaptive filter is unknown,

variable tap-length schemes can be employed. But, as men-

tioned in [8], MSE-based variable tap-length schemes can

lead to underestimation of the tap-length in certain applica-

tions. In order to overcome this problem, a parameter Δ,

which is a positive integer and sufficiently large to avoid sub-

optimum tap-lengths, has been introduced in [8]. We suppose

that N is the estimated length of the variable tap-length adap-

tive filter. Thus, the segmented error is constructed, as in [9]

by,

e
(N)
N−Δ(i) = d(i) − ui(1 : N − Δ)wi−1(1 : N − Δ) (4)

where ui(1 : N − Δ) and wi−1(1 : N − Δ) are vectors

consisting of the first N − Δ coefficients of ui and wi−1

respectively. The steady-state segmented MSE is further de-

fined as J
(N)
N−Δ = E[(e(N)

N−Δ(∞))2] where E[·] denotes statis-

tical expectation. The cost function to search for the optimum

tap-length is described as:

min{N |J (N)
N−Δ − J

(N)
N ≤ ε} (5)

where min(·) denotes the minimum value and ε is a prede-

termined small positive value selected according to the re-

quirements of the adaptive filter. For expressing the analy-

sis clearly, when the initial tap-length of the adaptive filter is

smaller than the converged tap-length of the adaptive filter,

we name it as increasing tap-length (ITL) estimation; when

the initial tap-length is larger than the converged tap-length,

we name it as decreasing tap-length (DTL) estimation.

3. ANALYSIS OF FRACTIONAL TAP-LENGTH
FUNCTION

To simplify the analysis, we make three assumptions:

A1. The input u(i) is a zero-mean stationary white signal
with variance σ2

u and the input vector ui is uncorrelated with
uj for i �= j.

A2. The background noise v(i) is also a zero-mean sta-
tionary white signal with variance σ2

v and uncorrelated with
vj for i �= j and u(j) for all j.

A3. The final optimum weight vector coefficient is suffi-
ciently different form zero, wo(M) �= 0.

In the variable tap-length algorithm, the fractional tap-

length function is defined as, [9],

Lf(i + 1) = Lf(i) − α + β · ηLn(i)(i) (6)

where α is the leakage factor, β is the step-size of the frac-

tional tap-length function and ηLn(i)(i) is the difference be-

tween the segmented MSE and the full MSE, given by,

ηLn(i)(i) = (e(Ln(i))
Ln(i)−Δ)2 − (e(Ln(i))

Ln(i) )2 (7)

where Ln(i) denotes the rounded value of Lf(i) and is con-

strained to be not less than Lmin, where Lmin > Δ, since

any tap-length below it cannot be calculated in (7).

After the initial convergence, assuming close proximity to

the optimal adaptive filter length and small misadjustment, the

tap-length Ln(i) should be designed to vary within [M +Δ−
1, M + Δ], from which the true tap-length of the unknown

system M can be found. When Ln(i) equals to M + Δ − 1,

the fractional tap-length function should be increased towards

M + Δ, namely ηM+Δ−1(i) > α
β . On the other hand, when

Ln(i) = M + Δ, the fractional tap-length should be de-

creased, namely ηM+Δ−1(i) < α
β . Therefore, the problem

becomes how to select the parameters α and β in equation

(6) to satisfy the above requirements. In order to make the

appropriate selection of α
β , let us evaluate the performance of

ηM+Δ−1(i), given by,

ηM+Δ−1(i) = (e(M+Δ−1)
M−1 )2 − (e(M+Δ−1)

M+Δ−1 )2 (8)

Taking statistical expectation of both sides, we obtain

E[ηM+Δ−1(i)] = E[(e(M+Δ−1)
M−1 )2]−E[(e(M+Δ−1)

M+Δ−1 )2] (9)

Due to the assumption A2, this becomes

E[ηM+Δ−1(i)] = A + σ2
uwo(M)2 − B (10)

where wo(M) is the final coefficient of the tap weight in the
unknown system, B equals to E[(ui(1 : M + Δ − 1)[wo(1 :
M + Δ − 1) − wi(1 : M + Δ − 1)])2] and A is constructed
as,

A = E[(ui(1 : M − 1)[wo(1 : M − 1) − wi−1(1 : M − 1)])2]

−2wo(M)E[ui(M)ui(1 : M − 1)wi−1(1 : M − 1)]

+2wo(M)E[ui(M)ui(1 : M − 1)]wo(1 : M − 1) (11)

According to the assumption A1, ui(M) is uncorrelated with

ui(1 : M − 1) and wi−1(1 : M − 1). Thus, the result of

the last two items on the right side of equation (11) is zero.

In addition, as i → ∞, J
(M+Δ−1)
M−1, excess and J

(M+Δ−1)
M+Δ−1, excess

are used to indicate the converged excess mean square errors

(EMSE). Therefore, equation (10) becomes

E[ηM+Δ−1(i)] = J
(M+Δ−1)
M−1, excess − J

(M+Δ−1)
M+Δ−1, excess

+σ2
uwo(M)2, as i → ∞ (12)
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After the same manipulations as in (9)-(12), the converged

E[ηM+Δ(i)] is also obtained as,

E[ηM+Δ(i)] = J
(M+Δ)
M, excess − J

(M+Δ)
M+Δ, excess

= C, as i → ∞ (13)

where C is a small negative value and given by −(ui(M +1 :
M+Δ)wi(M+1 : M+Δ))2. Therefore, given that the leak-

age parameter is positive, E[ηM+Δ−1(∞)] should be bigger

than zero, namely wo(M)2 > J
(M+Δ−1)
M−1, excess−J

(M+Δ−1)
M+Δ−1, excess

as required in A3. Only when we select the ratio of the op-

timum parameters α
β bigger than zero and smaller than the

value of E[ηM+Δ−1(∞)], can the steady-state tap-length of

the FT algorithm be used to calculate the true tap-length.

However, in the FT algorithm Ln(i) may converge to a

value within (M, M + Δ] when the parameters α and β are

not chosen appropriately. Thus, the analysis for this case is

developed. The expectation of the MSE difference, E[ηL] is

given by,

E[ηL(i)] = E[(e(L)
L−Δ)2] − E[(e(L)

L )2] (14)

where M < L ≤ M + Δ. Applying the same manipulations

as in the earlier analysis, we obtain

E[ηL(∞)] = J
(L)
L−Δ, excess − J

(L)
L, excess

+(M + Δ − L)||wo(L − Δ + 1 : M)||2 (15)

where ‖ · ‖2 denotes the squared Euclidean norm. The EMSE

of the LMS algorithm in [3] is formulated as

JLMS, excess =
μLσ2

uσ2
v

2 − μLσ2
u

(16)

According to the stability condition of the LMS algorithm

(see [1]), the value of μLσ2
u is chosen significantly smaller

than 2. As a result, the EMSE of the LMS algorithm (16)

becomes

JLMS, excess ≈ μLσ2
uσ2

v

2
(17)

In order to faciliate the analysis, we generally suppose that

with a small μ the difference between the segmented EMSE

and the full length EMSE is trivial compared to (M + Δ −
L)σ2

u||wo(L−Δ+1 : M)||2. Thus, equation (15) is approx-

imated as

E[ηL(∞)] ≈ (M +Δ−L)σ2
u||wo(L−Δ+1 : M)||2 (18)

From the above analysis, it is clear that E[ηL(∞)] is a mono-

tonic non-increasing function with respect to the tap-length L,

which is within the range (M, M +Δ]. From the above anal-

ysis, when we choose α
β close to zero the converged Ln(i)

can be utilized to calculate the true tap-length of the unknown

system by subtracting Δ. However, when α
β is chosen too

small, as observed in [7] the “wandering” problem occurs in

the DTL estimation, which results in a very slow convergence

rate for the fractional tap-length of the adaptive filter. Careful

choice of α
β is therefore crucial for successful operation of the

FT algorithm, and this motivates the work in section 4.

4. PROPOSED NOVEL ALGORITHM

In this section, we present a novel algorithm with an adaptive

leakage factor based on the FT algorithm [9]. Recalling (13),

the value of E[ηM+Δ(i)] is negative when Ln(i) = M + Δ.

Thus, we need the variable leakage factor to be close to zero at

the steady-state stage so that Lf(i) is not reduced too much in

(6) and the true tap-length M of the unknown system can be

calculated, and big enough during the learning stage to avoid

the “wandering” problem. To proceed, the smoothed error is

obtained from

ê(n) = (1 − ρ)
n∑

i=1

ρn−ie
(Ln(i))
Ln(i) (i) (19)

where the initial smoothed error is chosen as ê(0) = 1 and

ρ (0 � ρ < 1) is a forgetting factor that governs the time

averaging window to reduce the effect of the distant past and

adapt to the current statistics. With the assumption A2, the

expected performance of the squared smoothed error can then

be simplified as,

E[(ê(i))2] ≈ (1 − ρ)
(1 + ρ)

σ2
v , as i → ∞ (20)

where we use the assumption that at steady state the error

signal e
(Ln(i))
Ln(i) (i) is approximately equal to the noise signal

v(i).
The proposed adaptive leakage factor algorithm is formu-

lated as follows:

ê(i + 1) = ρê(i) + (1 − ρ)e(Ln(i+1))
Ln(i+1) (i + 1) (21)

ᾱ(i + 1) =
(ê(i + 1))2

(ê(i + 1))2 + δ
(22)

ᾱ(i + 1) = min(ᾱ(i + 1), αmax) (23)

Lf(i + 1) = Lf(i) − ᾱ(i + 1) + β · ηLn(i)(i) (24)

where δ indicates a positive constant and is related to σ2
v . Ac-

cording to (22), the converged variable leakage factor approx-

imately equals to
(1−ρ)σ2

v

(1+ρ)δ , when we choose δ 	 (ê(i + 1))2

as i → ∞, which is verified in section 5. The proper selection

of ρ and δ enables the variable leakage factor to converge to

the desired value.

5. SIMULATION

In this section, we show results of the computer simulation

which compare the performances of the original FT algorithm

and the novel algorithm. Two unknown system W1 and W2

are introduced and the coefficients of both filters are cho-

sen from a zero-mean uniformly distributed random sequence

and the tap-lengths are 20 and 10 respectively, to satisfy A3,

wo(M)2 is always bigger than 0.01. The input signal u(i) is

a zero-mean white-noise Gaussian sequence with σ2
u = 1 and

3839



500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

5

10

15

20

25

30

Iteration number

F
ra

c
ti
o
n
a
l 
ta

p
−

le
n
g
th

(a) Learning curves of fractional tap−length by averaging 200 Monte Carlo runs

1000 2000 3000 4000 5000 6000

0

0.05

0.1

0.15

Iteration number

A
m

p
lit

u
d
e

(b) Evolution curves of leakage factor by averaging 200 Monte Carlo runs

FT algorithm with α = 0.1
FT algorithm with α = 0.0005
Proposed algorithm

FT algorithm with α = 0.1
FT algorithm with α = 0.0005
Proposed algorithm

"wandering" problem

Fig. 1. Learning curves of the FT algorithm and the proposed

algorithm by averaging 200 Monte Carlo runs in 30dB SNR:

fractional tap-length (a), leakage factor (b).

the background noise is also a white-noise Gaussian sequence

with zero mean. We select the parameter Δ = 6 and the initial

tap-length Ln(0) equal to the minimum tap-length Lmin cho-

sen as Δ + 1 = 7. In this example, the step-size of the adap-

tive filter is chosen as μ = 0.005, which ensures the stability

of LMS (see [3]) and guarantees wo(M)2 > J
(M+Δ−1)
M−1, excess −

J
(M+Δ−1)
M+Δ−1, excess (see Section 3), and the smoothing factor of

error is chosen as ρ = 0.99, which results in the converged

smoothed MSE of the novel algorithm having approximately

the value of 0.005σ2
v , as in equation (20).

Figures 1(a) and 1(b) show the algorithms in a time vary-

ing scenario, where wo = W1 for i ≤ 2000 or i > 4000,

and wo = W2 for 2000 < i ≤ 4000, when the SNR is

30dB. And in both algorithms, the step-size β is set as 1.

The leakage factors of the FT algorithm are chosen as 0.1
and 0.0005 respectively. For the proposed algorithm, αmax

is chosen as 0.1 and δ = 0.01 is used to control the adap-

tive leakage factor. According to equations (20) and (22), the

converged leakage factor can be estimated and the value is

approximately 0.0005. As expected, Figure 1(a) shows that

the proposed scheme not only avoids “wandering” in high

value areas, which the FT algorithm with α = 0.0005 en-

counters during the period [2001, 4000], but also obtains an

improvement that its fractional tap-length better calculate the

true tap-length as compared to the FT algorithm with α = 0.1
for example during periods [1000, 2000], [2500, 4000] and

[5000, 6000]. In addition, it gives a good compromise for the

fractional tap-length convergence rate in both the ITL estima-

tion and the DTL estimation. The learning curve in Figure

1(b) shows the fluctuation of the variable leakage factor in

the time varying scenario which confirms the tracking abil-

ity of the variable leakage factor. Therefore, we find that

when the value of the leakage factor of the novel scheme for

the true tap-length is located in the range [0.0005, 0.1), the

proposed algorithm can be utilized to search for the true tap-

length without the “wandering” problem.

6. CONCLUSIONS

We have presented a novel adaptive leakage factor variable

tap-length learning algorithm based on the FT algorithm to-

gether with an analysis of the converged difference between

the segmented MSE of a filter formed from a number of ini-

tial coefficients of an adaptive filter, and the MSE of the full

adaptive filter, which motivates the novel scheme. The simu-

lation results have confirmed the advantages of the presented

algorithm over the original FT algorithm in terms of the per-

formance behavior of the fractional tap-length to ensure con-

vergence to permit calculation of the true tap-length in both

the ITL estimation and DTL estimation cases. Although in

this paper we limited our attention to the uncorrelated white-

noise input, we may expect further improvements by extend-

ing it to general coloured input.
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