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ABSTRACT

This paper proposes an affine projection adaptive filtering algorithm
incorporating a data selection strategy based on the set-membership
concept along with a partial update technique. The resulting algo-
rithm is flexible in the sense that it allows more general tradeoff be-
tween speed of convergence and misadjustment while constraining
the overall computational complexity. Simulation experiments in a
typical echo cancellation environment confirm the effectiveness of
the proposed algorithm.

Index Terms— Adaptive filters, set-membership filtering, echo
cancellation.

1. INTRODUCTION

Set-membership filtering (SMF) [1] has been widely studied in re-
cent years as a viable technique to reduce the computational com-
plexity in adaptive filtering. This can be achieved without significant
reduction in speed of convergence, while substantially decreasing
the misadjustment after convergence. In SMF, the filter coefficients
are updated only when the squared output estimation error is greater
than a prescribed threshold. The resulting set-membership adaptive
filters (SMAFs) utilize a deterministic objective function. This func-
tion enforces that the updated filter coefficients belong to a feasible
set where the filter output satisfies a bounded error constraint.

As a byproduct, the SMF algorithms reduce the computational
complexity mainly due to data-selective updates. This feature leads
to much lower complexity than related algorithms such as the nor-
malized LMS (NLMS), affine projection (AP), and recursive least
squares (RLS) algorithms [2]. There are many applications requir-
ing a large number of coefficients to be updated, a major drawback
for their implementation in systems with low-energy requirements.
A typical example is acoustics echo cancellation where, frequently,
a few thousands adaptive coefficients are required, leading to a sub-
stantial number of iterations before convergence is reached. A solu-
tion is the so called partial-update (PU) algorithms already exploited
in the literature [3, 4]. These algorithms select a subset of the filter
coefficients to update at each iteration. An example is the normal-
ized LMS with partial update [3, 4].

The main contribution of this article is to derive the Set-Mem-
bership Partial-Update Affine Projection (SM-PUAP) algorithm. The
combination of the partial-update strategy with the set-membership

framework allows the updating of a selected set of coefficients when-
ever an update is needed. The resulting algorithms benefit from the
sparse updating related to the set-membership framework and from
the partial update of the coefficients, reducing the average computa-
tional complexity. The proposed algorithm generalizes the Partial-
Update Set-Membership NLMS (SM-PUNLMS) [5] algorithm for
an arbitrary number of reuses. When compared to the SM-AP [6]
algorithm the SM-PUAP is able to reduce substantially the compu-
tational complexity due to the partial-update of the filter coefficients.

This paper is organized as follows: Section 2 introduces the
SMF concept; Section 3 derives the SM-AP [6] algorithm as the
starting point for the new proposed SM-PUAP algorithm presented
in Section 4. In Section 5, simulation results in an echo cancella-
tion environment show that the new algorithm delivers faster con-
vergence speed as well as smaller value for the misadjustment when
compared to the SM-PUNLMS. In addition, it has comparable per-
formance to the SM-AP algorithms while reducing substantially the
computational complexity.

2. SET-MEMBERSHIP FILTERING

The SMF concept is a framework applicable to adaptive filtering
problems that are linear in the parameters. A specification on the
filter parameters w ∈ R

N×1 is met by constraining the magnitude
of the output estimation error, e(k) = d(k)−w

T
x(k), to be smaller

than a deterministic threshold γ, where x(k) ∈ R
N×1 and d(k) ∈ R

denote the input vector and the desired output signal, respectively.
From the bounded error constraint results a set of filters rather than
a single estimate.

Adaptive SMF algorithms search for solutions that belong to the
exact membership set ψ(k) constructed from the observed input-
signal and desired signal pairs

ψ(k) =

k\
i=1

H(i), (1)

whereH(i) is referred to as the constraint set containing all the vec-
torsw for which the associated output error at time instant k is upper
bounded in magnitude by γ:

H(k) = {w ∈ R
N : |d(k)−w

T
x(k)| ≤ γ}. (2)

Adaptive algorithms of low computational complexity compute
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a point estimate through projections using information provided by
past constraint sets [1, 6].

3. SET-MEMBERSHIP AFFINE PROJECTION
ALGORITHM

The membership set ψ(k) defined in (1) suggests the use of more
constraint-sets in the update. This section derives an algorithm whose
updates belong to L past constraint sets [6]. The intersection of the
L past constraint sets ψL(k) is defined as

ψL(k) �

L−1\
i=0

H(k − i). (3)

The objective is to derive an algorithm whose coefficient update be-
longs to the last L constraint-sets, i.e.,w(k + 1) ∈ ψL(k).

Let S(k − i) denote the hyperplane which contains all vectors
w such that d(k− i)−w

T
x(k− i) = γi(k) for i = 0, . . . , L− 1.

The end of this section discusses a particular choice of the param-
eters γi(k), however for the time being, all choices satisfying the
bound constraint are valid. That is, if all γi(k) are chosen such that
|γi(k)| ≤ γ then S(k − i) ∈ H(k − i), for i = 0, . . . , L− 1.

Let us state the following optimization criterion for the vector
update whenever w(k) /∈ ψL(k):

min ‖w(k + 1)−w(k)‖2,

subject to: (4)
dap(k)−X

T
ap(k)w(k + 1) = γ(k),

where dap(k) ∈ R
L×1 contains the desired outputs from the L

last time instants, γ(k) ∈ R
L×1 specifies the point in ψL(k), and

Xap(k) ∈ R
N×L contains the input data, i.e.,

γ(k) = [γ0(k), γ1(k), . . . , γL−1(k)]
T , (5)

dap(k) = [d(k), d(k − 1), . . . , d(k − L+ 1)]T , (6)
Xap(k) = [x(k), x(k − 1), . . . ,x(k − L+ 1)], (7)

= [u0(k), u1(k), . . . ,uN−1(k)]
T ,

where x(k) is the input-signal vector

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T . (8)

Applying the method of Lagrange multipliers for solving the mini-
mization problem of (4), the update equation of the SM-AP version
is obtained as [6]

w(k + 1) =(
w(k) + Xap(k)

ˆ
X

T
ap(k)Xap(k)

˜−1
[e(k)− γ(k)] , if |e(k)| > γ,

w(k), otherwise,

(9)

where

e(k) =
ˆ
e(k), εk(k − 1), . . . , εk(k − L+ 1)

˜T
, (10)

with εk(k−i) = d(k−i)−x
T (k−i)w(k) denoting the a posteriori

error at iteration k for the i-th reuse.

In order to evaluate if an update w(k + 1) is required, it is
only necessary to check if w(k) /∈ H(k). This is a consequence of
the constraint set reuse guaranteeing that before an update w(k) ∈

H(k − i) holds for i = 1, . . . , L.
So far, the only requirement on the parameters γi(k) has been

that they should satisfy the constraint |γi(k)| ≤ γ. A particularly
simple SM-AP version is obtained if γi(k) for i �= 0 corresponds
to the a posteriori error εk(k − i) and γ0(k) = γe(k)/|e(k)|. The
simplified SM-AP version has the recursion given by [6]

w(k+1) = w(k)+Xap(k)
h
X

T
ap(k)Xap(k)

i−1

α(k)e(k)u1, (11)

where

α(k) =

(
1− γ

|e(k)|
, if |e(k)| > γ

0, otherwise
(12)

and u1 = [1, 0, . . . , 0]T . The last algorithm will minimize
the Euclidean norm ‖w(k + 1) − w(k)‖2 subject to the constraint
w(k + 1) ∈ ψL(k) such that γi(k) = εk(k − i), for i �= 0, and
γ0(k) = γe(k)/|e(k)|.

4. SET-MEMBERSHIP PARTIAL-UPDATE AFFINE
PROJECTION

The Partial-Update adaptation strategy represents an attractive way
to reduce the computational complexity of adaptive filtering algo-
rithms. While conventional adaptive filters recursions adapt all the
filter coefficients, the partial-update strategy provides a framework
to update M coefficients out of the N adaptive filter coefficients.
The Partial-Update strategy has been applied to a variety of adap-
tive filters, including the LMS algorithm [3], the Affine-Projection
algorithm [7], and the SM-NLMS algorithm [5]. Compared to the
Partial-Update Affine-Projection algorithm, the SM-PUAP benefits
from the partial update of the coefficients and also from the sparse
updating related to the set-membership framework. Moreover, the
SM-PUAP generalizes the Partial-Update Set-Membership NLMS
(SM-PUNLMS) [5] algorithm for an arbitrary number of reuses.

In particular, the application of the Partial-Update strategy to
the Affine Projection algorithm and to the Set-Membership Affine
Projection algorithm is appropriate and natural due to the least-per-
turbation property of these algorithms [8]. This means that these
algorithms try, at every adaptation step, to reduce the a posteriori
error with a correction factor, ‖w(k + 1) − w(k)‖2, of minimal
Euclidean norm. In this context, the Partial-Update strategy will en-
force further the least-perturbation property by assuring that onlyM
coefficients out of theN adaptive filter coefficients are allowed to be
updated.

TheM coefficients to be updated at time instant k are selected
through an index set IM (k) = {i0(k), . . . , iM−1(k)} where the
indexes {ij(k)}M−1

j=0 are chosen from the set of all available coef-
ficients to be updated, {0, . . . , N − 1}. In the Set-Membership
Partial-Update Affine Projection algorithm the optimal choice of the
index set IM (k) minimizes the Euclidean norm of the disturbance
factor, ‖w(k + 1)−w(k)‖2.

The objective function to be minimized in the SM-PUAP algo-
rithm is now described. A coefficient update is performed whenever
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w(k) �∈ ψL(k) such that

min ‖w(k + 1)−w(k)‖2 , (13)
subject to:
dap(k)−X

T
ap(k)w(k + 1) = γ(k),

C̃M (k) [w(k + 1)−w(k)] = 0,

where γ(k) is a vector determining a point within the constraint set
H(k), such that |γi(k)| ≤ γ, for i = 0, 1, . . . , L − 1. The matrix
C̃M (k) = I−CM (k) is a complementary matrix ofCM (k) enforc-
ing C̃M (k)w(k+1) = C̃M (k)w(k), such that onlyM coefficients
are updated. The matrix CM (k) is a diagonal matrix selecting the
coefficients to be updated at instant k, in case an update is required.
This matrix hasM nonzero elements equal to one placed at positions
indicated by IM (k). Using the method of Lagrange multipliers on
(13) it is possible to reach the recursive updating rule

w(k + 1) = w(k) + CM (k)Xap(k)R−1
M (k) [eap(k)− γ(k)] ,

(14)
where

RM (k) � X
T
ap(k)CM (k)Xap(k). (15)

Therefore, if an update is needed, we need to select the index
set, IM (k), that minimizes the following expression

‖w(k + 1)−w(k)‖2 = ‖R−1
M (k) [eap(k)− γ(k)] ‖2. (16)

In [7], for γ(k) = 0 and L > 1 the authors state that the bi-
nary integer programming problem of finding the optimal index set,
IM (k), can not be solved in an efficient way, from the computa-
tional viewpoint. In addition, the authors in [7] provide some heuris-
tic methods in an attempt to approximate the optimal solution. In
another work [5], it is shown that the binary integer programming
problem stated above can be solved in a rather simple way for the
special case of one single reuse, L = 1. Following a similar ap-
proach, we will show that for a simple choice of the variable γ(k)

it is possible to provide an interesting interpretation for the problem
stated above.

4.1. Choice of IM (k) and γ(k)

It is interesting to observe that by using the simple choice for the
vector variable γ(k), where γi(k) = εk(k − i), for i �= 0, and
γ0(k) = γe(k)/|e(k)|, it is possible to simplify (16) significantly.
That is, the minimization of (16) corresponds to the minimization
of the leftmost element in the first row of the inverse of the matrix
RM (k).

In this way, in order to obtain the exact expression for the left-
most element in the first row ofR−1

M (k), let us start by decomposing
the matrixRM (k) in blocks, as follows

RM (k) =

»
x

T (k)

X̄
T (k)

–
CM (k)

ˆ
x(k) X̄(k)

˜

=

»
x

T (k)CM (k)x(k) x
T (k)CM (k)X̄(k)

X̄
T (k)CM (k)x(k) X̄

T (k)CM (k)X̄(k)

–
.

(17)

Then, by using the matrix identity
»
A B

C D

–−1

=

»
I 0

−D
−1

C I

– »
S
−1
D 0

0 D
−1

– »
I −BD

−1

0 I

–
(18)

where SD = A − BD
−1

C is the Schur Complement of D, it is
possible to rewrite (16) in the following way

‖w(k + 1)−w(k)‖−2 = x
T (k)CM (k)

×

j
x(k)−X̄(k)

h
X̄

T (k)CM (k)X̄(k)
i−1“

X̄
T (k)CM (k)x(k)

”ff
= x

T (k)CM (k)(x(k)− x̂(k,CM (k)))

= x
T (k)CM (k)x̃(k,CM (k)), (19)

where x̂(k,CM (k)) corresponds to the weighted projection of x(k)

onto the range space of X̄(k) and x̃(k,CM (k)) to the weighted
projection of x(k) onto the orthogonal complement of X̄(k).

This means that for the simple choice of the vector variable
γ(k), the problem of finding the index set, IM (k), that minimizes
(16) is equivalent to select the binary weight matrix CM (k) that
maximizes the norm of the weighted projection of x(k) onto the
orthogonal complement of X̄(k). Although, this interpretation pro-
vides an insight into the current problem, we will still propose an
heuristic method in order to determine the index set, IM (k), due to
restrictions from the computational viewpoint.

Accordingly, in order to determine the index set, IM (k), we first
rank the columns of XT

ap(k), ui(k) for i = 0 . . . N − 1, according
to their Euclidean norms, ‖ui(k)‖

2. After that, we choose to update
the M coefficients of w(k) that multiply the columns of X

T
ap(k)

with theM larger Euclidean norms. This approach is computation-
ally attractive and presents very good performance results.

5. SIMULATION RESULTS

In this section, a simulation environment is described which will be
used to test the proposed algorithm and to perform comparisons with
other existing algorithms.

The tests recommended by the standard G.168 [9] from ITU uti-
lize particular signals such as noise, tones, fax signals and a set of
composite source signals (CSS). In this work, the CSS input signal
is applied to the input of the echo cancelers. The CSS simulates
speech characteristics in single talk and double talk enabling a per-
formance test for echo cancelers for speech signals. The CSS con-
sists of speech signal, non-speech signal and pauses.

According to the recommendation G.168 [9], the echo path is
modeled by a linear digital filter whose impulse response h(k) is
given by

h(k) = (Ki10
−ERL/20)mi(k − δ) (20)

where ERL is the echo return loss and h(k) is chosen as a delayed
and attenuated version of any sequences mi(k), i = 1, 2, . . . , 8, for
the channel models 1 to 8. These models have several origins rang-
ing from hybrid simulation models to measured responses on tele-
phone networks. The constants Ki depend on the channel model
used in the test [9].

The simulations consisted of 100 independent runs where the
average performance was computed. In our simulations, we used
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Fig. 1. Comparison of the SM-PUNLMS with the SM-PUAP for
M = 40 and L = 4.

Table 1. Algorithm Comparisons.
Algorithm Setup Updates ERLE (dB)

RLS 5659 46.46
SM-NLMS 2019 41.76

SM-AP (L = 2) 1192 44.66
SM-AP (L = 4) 1129 44.39

SM-PUAP (L = 1,M = 40) 2097 41.44
SM-PUAP (L = 2,M = 40) 1274 44.16
SM-PUAP (L = 4,M = 40) 1337 44.05

Channel Model 1 [9] and a CSS vector of 5659 samples. In addition,
we normalized the CSS vector to 0 dB and used a white Gaussian
measurement noise of variance, σ2

n = 10−6. In this echo cancel-
lation setup, both the echo path and the adaptive filter have 64 co-
efficients. Moreover, all algorithms employing Partial-Update use
M = 40.

As shown in Figure 1 the proposed algorithm, SM-PUAP, pro-
vides a faster convergence speed as well as smaller value for the
misadjustment when compared to SM-PUNLMS [5] algorithm. This
improved behavior is justified by the incorporation of reuses. Actu-
ally, the SM-PUNLMS corresponds to the SM-PUAP when L = 1.

In addition, Table 1 compares the value obtained for the ERLE
and also the number of updates required for important adaptive filter-
ing algorithms, including the RLS, the SM-NLMS [1] and the SM-
AP [6] algorithm. Table 1 shows that, for different number of reuses,
the new algorithm, by using less than two thirds of the total number
of coefficients, provides only a mild performance degradation when
compared to the SM-AP algorithm.

6. CONCLUSIONS

This paper introduces the Set-Membership Partial-Update Affine Pro-
jection algorithm that can substantially reduce the computational
complexity of the fast converging Set-Membership Affine Projec-
tion adaptive algorithms. The proposed algorithm appears to be a
viable solution to power-constrained applications where fast con-
verging adaptive filters are required. Simulation results in an echo
cancellation environment confirm the high performance of the pro-
posed algorithm while saving a large amount of computations. In
particular, it was verified that the partial update allowed a reduction
of more than 30% in the number of updated coefficients without sub-
stantial increase in the number of updates. The updating counts for
the SM-PUAP algorithms ranged from around 25% to 37% of the
number of updates in standard algorithms.
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