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ABSTRACT

This paper presents an analysis of the steady-state mean-square error
of an adaptive filtering algorithm using the metric projection onto a
closed hyperslab, which we refer to as the hyperslab projection algo-
rithm (HSPA). HSPA is not only a generalization of both the normal-
ized least mean square (NLMS) algorithm and the set-membership
NLMS (SM-NLMS) algorithm but also a special case of the adap-
tive parallel subgradient projection (PSP) method. It is known that
HSPA possesses both fast convergence and robustness against noise.
The approach of this paper is to employ the energy conservation re-
lation, which enables us to avoid the transient analysis of HSPA.
Under different assumptions, we obtain two results, which are gen-
eralizations of well-known results of the steady-state performance
of NLMS. Extensive simulations show the good match between the
theories and experiments.

Index Terms— Adaptive filters, steady-state performance, pro-
jection, hyperslab, energy conservation relation

1. INTRODUCTION

Adaptive filters based on orthogonal projections, such as the nor-
malized least mean square (NLMS) algorithm and the affine projec-
tion algorithm (APA), are widely used as low computational cost
algorithms, and there are many works on performance analyses of
these algorithms; see e.g. [1–3] and references therein. It is also
known that sensitivities to noise of these algorithms are overcame
in the framework of the set-theoretic (set-membership) adaptive fil-
tering [4–8], where orthogonal projections are replaced by convex
projections. However, in general, statistical performance analyses of
set-theoretic algorithms are challenging problems due to nonlineari-
ties of convex projections.

In this paper, we tackle a steady-state performance analysis of
an adaptive algorithm using the projection onto a closed hyperslab,
which we refer to as the hyperslab projection algorithm (HSPA).
HSPA might be the simplest set-theoretic adaptive algorithm as well
as a slight generalization of the set-membership NLMS (SM-NLMS)
algorithm [4, 6], which is a generalization of NLMS. In addition,
HSPA is also a special case of the adaptive parallel subgradient
projection (PSP) algorithm [5], which uses multiple hyperslabs si-
multaneously. Although it has been experimentally shown that SM-
NLMS and PSP possess good steady-state performances and robust-
ness against noise [4–6], there are few statistical analysis on the
steady-state performances of these algorithms (an available analysis
can be found in [7]). This motivates us to analyze the steady-state
performance of HSPA statistically.

The approach of this paper is to employ the energy conservation
relation [1–3], which is one of powerful techniques for analyses of
adaptive algorithms. This technique enables us to avoid a transient
analysis of HSPA. Since HSPA is a generalization of SM-NLMS and
a special example of PSP, our result covers not only the steady-state
performance of SM-NLMS but also a partial analysis of that of PSP.

2. PRELIMINARIES

2.1. Notation

Throughout the paper, we use the following notation: Let R denote
the set of all real numbers. Vectors and matrices are denoted by bold
faces. The Euclidean norm and the transpose of a vector are denoted
by ‖ · ‖ and (·)t, respectively. The trace of a matrix is denoted by
tr(·). Expectation is denoted by E[ · ].

2.2. Data Model and Hyperslab Projection Algorithm (HSPA)

We consider noisy measurements di ∈ R (i = 0, 1, . . . ) that arise
from the following real-valued linear model:

di = u
t
iw

o + vi, i = 0, 1, . . . , (1)

where w
o ∈ R

N is an unknown column vector we wish to esti-
mate, {ui}i≥0 ⊂ R

N is a sequence of input (regressor) vectors, and
{vi}i≥0 ⊂ R accounts for measurement noise and modeling errors.
Both {ui}i≥0 and {vi}i≥0 are stochastic processes, and we assume
that {vi}i≥0 is white and independent of {ui}i≥0; see (a) in Table 1.

Since vi is zero-mean, by choosing a parameter ρ ≥ 0 appro-
priately, the event |di − u

t
iw

o| ≤ ρ occurs with high probability.
Hence,wo is highly expected to belong to the following hyperslabs:

Si := {w ∈ R
N : |di − u

t
iw| ≤ ρ}, i = 0, 1, . . . .

The strategy of HSPA is to move its weight vector wi ∈ R
N closer

to all points in Si at each time i. This is achieved by using the metric
projection PSi

from R
N onto Si as follows:

Algorithm 1 (HSPA, see Fig. 1). With an arbitrary initial estimate
w0 ∈ R

N , generate a sequence {wi}i≥0 by

wi+1 = wi + μ
`
PSi

(wi)−wi

´
, ∀i = 0, 1, . . . ,

or equivalently

wi+1 =

8>>>><
>>>>:

wi if |ei| ≤ ρ,

wi + μ
ei − ρ

‖ui‖2
ui if ei > ρ,

wi + μ
ei + ρ

‖ui‖2
ui if ei < −ρ,

(2)
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Fig. 1. Geometrical interpretation of HSPA.

where μ ∈ (0, 2) is a relaxation parameter (stepsize) and ei ∈ R is
the output estimation error at time i, i.e.,

ei := di − u
t
iwi, i = 0, 1, . . . .

Here, introducing the function fρ : R → R defined as

fρ(x) :=
|x + ρ| − |x− ρ|

2
, ∀x ∈ R,

we can express (2) without if-statements as follows:

wi+1 = wi + μ
`
ei − fρ(ei)

´ ui

‖ui‖2 , ∀i = 0, 1, . . . . (3)

It is simply verified that (2) and (3) are mathematically equivalent.
From (3), we can see that HSPA involves the data-normalization [2]
and the error-nonlinearity [3]. The function fρ characterizes the non-
linearity of HSPA attributed to the parameter ρ.

There is a close relation between HSPA and other projection-
type algorithms, which is summarized as follows:
Remark 1. NLMS corresponds to HSPA with ρ = 0, while SM-
NLMS [4, 6] corresponds to HSPA with μ = 1. Thus, HSPA is a
generalization of these algorithms. On the other hand, HSPA is a
special example of the adaptive PSP [5], in which multiple hyper-
slabs are used simultaneously.

Although it has been experimentally shown that HSPA has a de-
sirable performance, how the parameters (μ, ρ) affect its steady-state
performance remains an open question. The objective of the paper
is to clarify the relation between the parameters and the steady-state
performance.

3. STEADY-STATE PERFORMANCE ANALYSIS

We now perform the steady-state performance analysis of HSPA (Al-
gorithm 1). Assumptions used in arguments are listed in Table 1.
Due to space limitation, we only highlight main steps.

We are interested in evaluating the steady-state mean-square er-
ror (MSE), which is defined as

MSE := lim
i→∞

E|ei|2.

To evaluate this, we introduce the following error measures:

ewi := w
o −wi, e

a
i := u

t
i ewi, e

p

i := u
t
i ewi+1,

Table 1. Assumptions used in the steady-state analysis.

(a). The noise {vi}i≥0 is white with a variance σ2 and sta-
tistically independent of {ui}i≥0.

(b). For all i ≥ is, the random variable ‖ui‖−2 is un-
correlated with all random variables |ea

i |2, ea
i fρ(ei),

eifρ(ei), and f2
ρ (ei).

(c). The noise {vi}i≥0 is Gaussian.

(d). For all i ≥ is, the random variable ea
i is zero-mean

Gaussian (i.e, its variance is E|ea
i |2).

(e). The sequences {E|ei|2}i≥0 and {E‖ewi‖2}i≥0 are
convergent.

(f). The following equalities hold:

E

» |ea
i |2

‖ui‖2
–

=
E|ea

i |2
E‖ui‖2 , E

»
eifρ(ei)

‖ui‖2
–

=
E
ˆ
eifρ(ei)

˜
E‖ui‖2 ,

E

»
ea

i fρ(ei)

‖ui‖2
–

=
E
ˆ
ea

i fρ(ei)
˜

E‖ui‖2 , E

»
f2

ρ (ei)

‖ui‖2
–

=
E
ˆ
f2

ρ (ei)
˜

E‖ui‖2 .

where ewi is the weight error vector, ea
i is the a priori error, and e

p

i is
the a posteriori error. Note that it follows from (1) that

ei = e
a
i + vi, ∀i = 0, 1, . . . . (4)

Hence, under the assumption (a) in Table 1, we have

E|ei|2 = E|ea
i |2 + σ

2
, ∀i = 0, 1, . . . . (5)

In view of this, MSE can be evaluated through

EMSE := lim
i→∞

E|ea
i |2,

which is called the excess mean square error (EMSE).
Now, subtracting (3) from w

o, we have

ewi+1 = ewi − μ
`
ei − fρ(ei)

´ ui

‖ui‖2 , ∀i = 0, 1, . . . . (6)

Furthermore, premultiplying (6) by u
t
i , we obtain

e
p

i = e
a
i − μ

`
ei − fρ(ei)

´
, ∀i = 0, 1, . . . . (7)

We here apply the energy conservation relation [1], which ensures
the following equality for all i = 0, 1, . . . :

‖ewi+1‖2 +
`‖ui‖2

´†|ea
i |2 = ‖ewi‖2 +

`‖ui‖2
´†|ep

i |2, (8)

where (·)† denotes the pseudo-inverse.1 It should be noted here that
no assumptions or approximations are used to establish (8); see for
details [1–3] and references therein. Substituting (7) into (8) and
taking the expectation under the assumption (a) in Table 1, we obtain

(2− μ) E

» |ea
i |2

‖ui‖2
–

= μσ
2 E

»
1

‖ui‖2
–
− 2μ E

»
eifρ(ei)

‖ui‖2
–

+ 2E

»
ea

i fρ(ei)

‖ui‖2
–

+ μ E

»
f2

ρ (ei)

‖ui‖2
–

+ δi (9)

1The pseudo-inverse of a scalar x is defined as follows: x
†

= x
−1 if

x �= 0 and x
†

= 0 if x = 0.
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for all i = 0, 1, . . . , where

δi :=
1

μ

`
E‖ewi‖2 − E‖ewi+1‖2

´
, ∀i = 0, 1, . . . .

So far, we have established (9) only under the assumption (a) in Ta-
ble 1, which could be natural in practice. However, in general, it is
hard to evaluate the expectations in (9). To overcome this difficulty,
we use two different assumptions.

3.1. Uncorrelation Assumption

In what follows, we focus on the steady-state, which is regarded
as time i such that i ≥ is for a sufficiently large is. We first use
the assumption (b) in Table 1. Although in general this assumption
might not hold, it helps us to make (9) much simpler as follows:

(2− μ) E|ea
i |2 = μσ

2 − 2μ E
ˆ
eifρ(ei)

˜
+ 2E

ˆ
e
a
i fρ(ei)

˜
+ μ E

ˆ
f

2
ρ (ei)

˜
+ δi E

»
1

‖ui‖2
–−1

(10)

for all i ≥ is. To evaluate the expectations on the right hand side, we
further assume Gaussianities of vi and ea

i ; see (c) and (d) in Table 1.
Note that, in view of (4), ei is also Gaussian. Hence, E[eifρ(ei)] and
E[f2

ρ (ei)] can be evaluated by direct calculation. On the other hand,
since ea

i and ei are jointly Gaussian, E[ea
i fρ(ei)] can be evaluated

by using Price’s theorem; see [1, 3] for details. Calculation results
are as follows:

E
ˆ
eifρ(ei)

˜
= E|ei|2 erf

„
ρp

2E|ei|2
«

E
ˆ
e
a
i fρ(ei)

˜
= E|ea

i |2 erf

„
ρp

2E|ei|2
«

E
ˆ
f

2
ρ (ei)

˜
= (E|ei|2 − ρ

2) erf

„
ρp

2 E|ei|2
«

− ρ

r
2E|ei|2

π
exp

„
− ρ2

2E|ei|2
«

+ ρ
2

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(11)

where erf : R → R is the error function defined as

erf(x) :=
2√
π

Z x

0

e
−t2

dt, ∀x ∈ R.

Finally, we use the assumption (e) in Table 1, which is natural if the
filter reaches its steady-state. Note that δi → 0 as i →∞ under this
assumption. Combining (5), (10), and (11) and letting i → ∞, we
obtain the following result:

Theorem 1. Under the assumptions (a)–(e) in Table 1, the steady-
state MSE, say ξ, of HSPA is given as a solution of the following
system:

8>><
>>:

ξ =
2σ2 + μρ2

2− μ
− μρ

2− μ

r
2ξ

π

exp
`− ρ2

2ξ

´
1− erf

`
ρ√
2ξ

´ ;

ξ ≥ σ
2
.

The steady-state EMSE of HSPA is given by ξ − σ2.

3.2. Separation Assumption

We next use the assumption (f) instead of (b) in Table 1. Similar
assumptions have often been used; see e.g. [1]. In a way similar to
the previous subsection, applying the assumption (f) to (9) and using
(11), we obtain the following result:

Theorem 2. LetR := E[uiu
t
i] be a correlation matrix of the input

vector and let
C := tr(R) E

»
1

‖ui‖2
–
.

Then, under the assumptions (a) and (c)–(f) in Table 1, the steady-
state MSE, say ξ, of HSPA is given as a solution of the following
system:8>><
>>:

ξ =
2σ2 + μρ2

2− μ
− μ

2− μ
·
(1− C)σ2 + ρ

q
2ξ

π
exp

`− ρ2

2ξ

´
1− erf

`
ρ√
2ξ

´ ;

ξ ≥ σ
2
.

The steady-state EMSE of HSPA is given by ξ − σ2.

This result reflects the statistics of {ui}i≥0, while Theorem 1 is in-
dependent of it. Finally, we mention the following:

Remark 2. When ρ = 0 (i.e., HSPA corresponds to NLMS), Theo-
rems 1 and 2 reproduce well-known analysis results of NLMS; see
e.g. [1]. Thus, our results are natural extensions of these results.

4. SIMULATION RESULTS

In this section, we compare experimental steady-state MSEs of HSPA
with Theorems 1 and 2 in the following settings: The unknown vec-
tor wo has 16 taps and is randomly generated. The input vector has
a shift structure, i.e.,

ui := (ui, ui−1, . . . , ui−15)
t
,

where we set ui = 0 if i < 0. For the input {ui}, we consider three
cases: (i) colored Gaussian, (ii) correlated uniform, and (iii) binary
signals. The colored Gaussian and correlated uniform signals are
generated by passing white Gaussian and uniform processes {xi}i≥0

through a first-order autoregressive (AR(1)) model:

ui = aui−1 + xi, ∀i = 0, 1, . . . ,

where a ∈ [0, 1) is a pole of the AR(1) model. For the colored
Gaussian input, {xi}i≥0 is white Gaussian with unit variance and
a is set to 0.8, while for the correlated uniform input the process
{xi}i≥0 is iid uniformly distributed on [−1, 1] and a is set to 0.5.
For the binary input, {ui}i≥0 is iid uniformly distributed on {±1}.
The noise {vi}i≥0 is white Gaussian and its variance σ2 is set so
that the signal-to-noise ratio (SNR) is 10 dB.

For the parameters of HSPA, a wide range of the stepsize μ and
ρ ∈ {0, σ, 2σ} are tested for each input. All results are obtained
by ensemble averaging 100 independent trials, and the steady-state
MSE of each trial is obtained by averaging last 104 samples of |ei|2
after 105 iterations. Figs. 2, 3, and 4 show results for the colored
Gaussian, correlated uniform, and binary inputs, respectively. These
figures show good matches between Theorem 1 and experiments.
However, big mismatches between Theorem 2 and the experiments
are observed when ρ is large except for the binary input. This is
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Fig. 2. Comparison between the theories and experiments for the
Gaussian AR(1) with pole at a = 0.8.
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Fig. 3. Comparison between the theories and experiments for the
uniform AR(1) with pole at a = 0.5.

because the approximation error of (f) in Table 1 increases as ρ be-
comes larger. For the binary input, we can see that Theorems 1 and
2 are almost perfect. This is because the assumptions (b) and (f) in
Table 1 hold exactly.

5. CONCLUDING REMARKS

We have analyzed the steady-state MSE and EMSE of HSPA (Al-
gorithm 1) by using the energy conservation relation and presented
two results based on different assumptions; see Theorems 1 and 2.
These results have been natural extensions of well-known analyses
of NLMS.We have also shown in simulations good matches between
theoretical and experimental MSEs for three types of input signals.
Let us finally mention that, while this paper have focused on the
statistical analysis of HSPA, a deterministic convergence analysis of
HSPA was studied in the framework of the adaptive projected sub-
gradient method (APSM); see for details [8].
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