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ABSTRACT
To date no theoretical results have been developed to pre-

dict the performance of the proportionate normalized least

mean square (PNLMS) algorithm or any of its cousin algo-

rithms such as the μ-law PNLMS (MPNLMS), and the ε-

law PNLMS (EPNLMS). In this paper we develop an ana-

lytic approach to predicting the performance of the simplified

PNLMS algorithm which is closely related to the PNLMS al-

gorithm. In particular we demonstrate the ability to predict

the Mean Square Output Error of the simplified PNLMS al-

gorithm using our theory.

Index Terms— Adaptive filtering, convergence, propor-

tionate-type normalized least mean square (PtNLMS) algo-

rithm, sparse impulse response.

1. INTRODUCTION

We begin by assuming there is some input signal denoted

as x(k) for time k that excites an unknown system with im-

pulse response wopt. Let the output of the system be y(k) =
wT

optx(k) where x(k) = [x(k), x(k−1), . . . , x(k−L+1)]T .

The measured output of the system, d(k), contains zero-mean

stationary measurement noise v(k) and is equal to the sum

of y(k) and v(k). The impulse response of the system is es-

timated with the adaptive filter coefficient vector, ŵ(k). The

error signal e(k) between the output of the adaptive filter ŷ(k)
and d(k) drives the adaptive algorithm. The weight devia-

tion (WD) vector is given by z(k) = wopt − ŵ(k). The

normalized least mean square (NLMS) algorithm for an arbi-

trary time-varying stepsize control matrix is shown in Table

1, as given in [1]. Here, β is the fixed stepsize parameter,

G(k + 1) = diag {g1(k + 1), . . . , gL(k + 1)} is the time-

varying stepsize control matrix, and L is the length of the

adaptive filter. The constant δ is typically a small positive

number used to avoid overflowing.

Next, we seek the representation of the Mean Square Out-

put Error (MSE) (Learning Curve) for the proportionate-type

normalized least mean square (PtNLMS) algorithm [2]. The

MSE is given by J(k) = E{|e(k)|2}. By expanding the

e(k) term and assuming that the input signal is white, i.e.

Table 1

NLMS Algorithm with Arbitrary Stepsize Matrix

x(k) = [x(k)x(k − 1) . . . x(k − L + 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k) − ŷ(k)
G(k + 1) = diag{g1(k + 1), . . . , gL(k + 1)}
ŵ(k + 1) = ŵ(k) + βG(k+1)x(k)e(k)

xT (k)G(k+1)x(k)+δ

R = σ2
xI, and β is so small that the LMS coefficient esti-

mator acts as a low pass filter, then we can rewrite the MSE

in the following form [4]:

J(k) = Jmin + σ2
x

L∑
i=1

E{z2
i (k)}

where the first term Jmin is equal to the variance of the noise,

σ2
v , and zi(k) are the elements of z(k). Hence in order to

calculate the MSE we need to find the expected value of the

square weight deviations z2
i (k).

At this stage we proceed by considering the MSE for spe-

cific proportionate type NLMS algorithms. Many proportion-

ate type NLMS algorithms, such as the PNLMS [3], MPNLMS

[1], and EPNLMS [2] imply highly non-linear (threshold-

based) operations. In order to simplify the derivation of ana-

lytical results we examine in this paper a simplified PNLMS

algorithm. The calculation of the gain for the simplified PN-

LMS algorithm is given in Table 2. The simplified PNLMS

algorithm avoids the usage of the maximum function which

is employed in the PNLMS, MPNLMS, and EPNLMS algo-

rithms.

Table 2

Simplified PNLMS Algorithm

Fi(k) = ρ + |ŵi(k)|, i = 1, . . . , L, ρ > 0
F(k) = [F1(k), . . . , FL(k)]T

g(k + 1) =
F(k)

1/L
�

i Fi(k)
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2. RECURSIVE CALCULATION OF THE MEAN WD
AND MEAN SQUARE WD

We can represent the WD at time k + 1 in terms of the prior

WD at time k using the recursion for the estimated optimal

coefficient vector. Using the convention that xi(k) = x(k −
i + 1), this recursion in component-wise form is given by

zi(k + 1) = zi(k)

− βgi(k + 1)xi(k)
∑L

j=1 xj(k)zj(k)
xT (k)G(k + 1)x(k) + δ

− βgi(k + 1)xi(k)ν(k)
xT (k)G(k + 1)x(k) + δ

. (1)

The component-wise form of the recursion for the square

of the WD is given by

z2
i (k + 1) = z2

i (k)

− 2βgi(k+1)xi(k)
�L

j=1xj(k)zj(k)zi(k)

xT (k)G(k+1)x(k)+δ

− 2βgi(k+1)xi(k)ν(k)zi(k)
xT (k)G(k+1)x(k)+δ

−β2g2
i (k+1)x2

i (k)
�

j

�
m xj(k)xm(k)zj(k)zm(k)

(xT (k)G(k+1)x(k)+δ)2

+ β2g2
i (k+1)x2

i (k)ν2(k)
(xT (k)G(k+1)x(k)+δ)2

+
β2g2

i (k+1)x2
i (k)
�

j xj(k)zj(k)ν(k)

(xT (k)G(k+1)x(k)+δ)2
.

(2)

Next we take the expected value of the WD and the square

WD. In order to do so we make the following set of assump-

tions.

Assumption I: The adaptation stepsize parameter β is suf-

ficiently small and the LMS coefficient estimator acts as a low

pass filter. Hence, zi(k) changes slowly relative to xi(k).
Assumption II: The input signal and observation noise are

uncorrelated. This assumption is justified provided that the

use of the linear unknown system model is applicable and the

length of the Wiener optimal solution for the adaptive filter is

exactly equal to the order of the unknown system.

Assumption III: The expectation of a ratio of two random

variables is equal to the ratio of the expectations of each ran-

dom variable. In our case the denominator of interest is typ-

ically the term x(k)T G(k + 1)x(k) + δ. This assumption

holds if the denominator is nearly constant or if we have the

condition that L >>
√

2
∑L

i=1 E{g2
i (k + 1)}, [5]. We can

derive the expectation of the denominator term by looking at

it in component-wise form and applying Assumption I, [5]:

E{
L∑

j=1

x2
j (k)gj(k + 1) + δ}

= E{
L∑

j=1

E{x2
j (k)}gj(k + 1) + δ}= σ2

xL + δ (3)

Simulations have confirmed that this assumption holds in the

situations discussed in this paper. Also, when ρ is very small

( ρ < 10−4 ) the experiments show that the assumption does

not hold. However most real world applications use larger

values for the ρ parameter and therefore this is not an issue.

Assumption IV: The expectation of the denominator term

squared is equal to the square of the expectation of the de-

nominator. This assumption leads to

E{(xT (k)G(k + 1)x(k) + δ)2} = (σ2
xL + δ)2.

It holds if the denominator is nearly constant.

Therefore we can write that the expectation of the WD

can be found recursively from the prior time step by

E{zi(k + 1)} = E{zi(k)} − βoE{gi(k + 1)zi(k)} (4)

where βo = βσ2
x

σ2
xL+δ .

Similarly based upon our assumptions, the expected value

of the square WD is given by

E{z2
i (k + 1)} = E{z2

i (k)} − 2βoE{gi(k + 1)z2
i (k)}

+β2
oE{g2

i (k + 1)
L∑

j=1

z2
j (k)} +

β2
oσ2

v

σ2
x

E{g2
i (k + 1)}. (5)

At this point we have the potential to recursively estimate

the expected value of the WD and the square WD vectors.

One issue remaining is the calculation of terms such as

E{gn
i (k + 1)zm

j (k)} (6)

for n ∈ {1, 2}, m ∈ {0, 1, 2} and i, j ∈ {1, 2, . . . , L}.
We assume, that

E{gn
i (k + 1)zm

j (k)} = E{gi(k + 1)}nE{zm
j (k)} if i �= j.

Now, we can take two approaches when calculating the

expectation for i = j. In the first approach we assume that

the expectation of the product of gn
i (k +1) and zm

i (k) is sep-

arable. In addition to this, we assume that the expectation of

the product of the gains is equal to the product of the expec-

tations of the gains (this assumption holds when gi(k + 1) is

slow varying), that is

E{gn
i (k + 1)} = E{gi(k + 1)}n. (7)

Therefore we have

E{gn
i (k + 1)zm

i (k)} = E{gi(k + 1)}nE{zm
i (k)}.

This approach has been dubbed the ‘Separable Approach’.

Alternatively, we can calculate explicitly the expectations

in (6). We refer to this approach as the ‘Non-Separable Ap-

proach’. In the next section we develop the needed probability

distributions and expressions for the two approaches.
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3. RECURSIVE CALCULATION OF EXPECTATIONS

We begin by assuming that the ith component of the weight

deviation at time k has a normal distribution with mean μi(k)
and variance σ2

i (k) i.e.

zi(k) ∼ N (μi(k), σ2
i (k)).

This assumption is based on a possibility of applying the cen-

tral limit theorem to the recursion for the weight deviation in

(1), as well as simulations. Given this assumption each com-

ponent of the estimated optimal weight vector is distributed

as

ŵi(k) = wi − zi(k) ∼ N (mi(k), σ2
i (k))

where mi(k) = wi − μi(k). The p.d.f. of |ŵi(k)| is given by

f(|ŵi(k)|) =
1√

2πσ2
i (k)

[e
− (|ŵi(k)|−mi(k))2

2σ2
i
(k)

+ e
− (|ŵi(k)|+mi(k))2

2σ2
i
(k) ]U(ŵi(k)) (8)

where U(x) is the unit step function [6].

We now take advantage of the form of this p.d.f. and

calculate several expectations which will be useful in future

derivations. We begin by finding the mean of this distribution

which is given by

E{|ŵi(k)|} = mi(k)erf
( mi(k)√

2σ2
i (k)

)
+

√
2
π

σi(k)e
− m2

i (k)

2σ2
i
(k) .

(9)

Additionally, the second moment is given by

E{|ŵi(k)|2} = m2
i (k) + σ2

i (k). (10)

We can also calculate the following expectations:

E{|ŵi(k)|(wi − ŵi(k))} =
(
wiμi(k) − σ2

i (k) − μ2
i (k)

)
×erf

(
mi(k)√
2σ2

i (k)

)
+ 2σi(k)μi(k)√

2π
e
− m2

i (k)

2σ2
i
(k)

(11)
E{|ŵi(k)|(wi − ŵi(k))2} =

(
wiμ

2
i (k) + wiσ

2
i (k)

−3μi(k)σ2
i (k) − μ3

i (k)
)
erf

(
mi(k)√
2σ2

i (k)

)

+
(
2μ2

i (k) + 4σ2
i (k)

)σi(k)√
2π

e
− m2

i (k)

2σ2
i
(k)

(12)

E{|ŵi(k)|2(wi − ŵi(k))2} = w2
i

(
μ2

i (k) + σ2
i (k)

)
−2wi

(
μ3

i (k) + 3μi(k)σ2
i (k)

)
+μ4

i (k) + 6μ2
i (k)σ2

i (k) + 3σ4
i (k)

(13)

3.1. Separable Expectation Calculations

In the separable case the expectation of the WD and the square

WD are given by

E{zi(k + 1)} = E{zi(k)}−βoE{gi(k + 1)}E{zi(k)}(14)

E{z2
i (k + 1)} = E{z2

i (k)} − 2βoE{gi(k + 1)}E{z2
i (k)}

+β2
oE{gi(k + 1)}2

L∑
j=1

E{z2
j (k)} +

β2
oσ2

v

σ2
x

E{gi(k + 1)}2

(15)

respectively. Note σ2
i (k) = E{z2

i (k)} − E2{zi(k)}. At this

point we are left to find E{gi(k+1)}. This term can be found

as

E{gi(k + 1)}= E{ Fi(k)
1/L

∑
j Fj(k)

}

≈ ρ + E{|ŵi(k)|}
1/L

∑
j(ρ + E{|ŵj(k)|}) . (16)

This algorithm is initialized by setting E{zi(0)} = wi and

E{z2
i (0)} = w2

i .

3.2. Non-Separable Expectation Calculations

In order to calculate the mean WD and the mean square WD

we find:

E{gi(k + 1)zi(k)} = E{
(
ρ+|wi−zi(k)|

)
zi(k)

1/L
�

j (ρ+|wj−zj(k)|)}
≈ ρE{zi(k)}+E{|ŵi(k)|(wi−ŵi(k))}

1/L
�

j (ρ+E{|ŵj(k)|}) .
(17)

E{gi(k + 1)z2
i (k)} = E{ (ρ+|wi−zi(k)|)z2

i (k)
1/L
�

j (ρ+|wj−zj(k)|)}
≈ ρE{z2

i (k)}+E{|ŵi(k)|(wi−ŵi(k))2}
1/L
�

j (ρ+E{|ŵj(k)|}) .
(18)

E{g2
i (k + 1)z2

i (k)} = E{
(
ρ+|wi−zi(k)|

)2
z2

i (k)(
1/L
�

j (ρ+|wj−zj(k)|)
)2 }

≈
[
ρ2E{z2

i (k)} + 2ρE{|ŵi(k)|(wi − ŵi(k))2}

+E{|ŵi(k)|2(wi − ŵi(k))2}
]
/
(

1
L

∑
j (ρ + E{|ŵj(k)|}))2

.

(19)

E{g2
i (k + 1)} = E{

(
ρ+|wi−zi(k)|

)2(
1/L
�

j (ρ+|wj−zj(k)|)
)2 }

≈ ρ2+2ρE{|ŵi(k)|}+E{|ŵi(k)|2}(
1/L
�

j (ρ+E{|ŵj(k)|})
)2 .

(20)

Using equations (9)-(13) these terms can be calculated.

4. RESULTS

Now we compare the theory derived to actual results from

Monte Carlo simulations. In the simulations and figures that

are shown the following parameters have been chosen unless

specified otherwise, L = 512, σ2
x = 10−2 σ2

v = 10−6, and

δ = 10−4. We have developed a metric to quantitatively mea-

sure how well the theory fits the ensemble averaged results.

The metric is given by

C =
∑

k |e2
T (k) − e2

MC(k)|∑
k e2

MC(k)
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where e2
T (k) is the squared output error generated by the the-

ory at time k and e2
MC(k) is the squared output error gen-

erated by the ensemble average at time k. The term in the

denominator has been added in an attempt to make the metric

independent of the input signal power.

We compare the performance of the ‘Separable Approach’

theory versus the ‘Nonseparable Approach’ theory when us-

ing the echo-path impulse response presented in [7]. This im-

pulse is sparse because very few coefficients have non-zero

values. The performance of the ‘Separable Approach’ theory

for ρ = 10−2 is shown in Figure 1. The results when using

the ‘Nonseparable Approach’ theory for ρ = 10−2 is shown

in Figure 2. The ‘Nonseparable Approach’ theory performs

slightly better than the ‘Separable Approach’ theory. This

improvement is reflected in the metric C where it has been

reduced from a value of 0.14631 to 0.11011 after applying

the ‘Nonseparable Approach’ theory.
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ENSEMBLE AVERAGED
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Fig. 1. Learning curve of simplified PNLMS algorithm ρ =
10−2 using ‘Separable Approach’ theory

5. CONCLUSIONS

We have developed two analytical methods to predict the per-

formance of the simplified PNLMS algorithm by developing

recursions for the mean weight deviation and mean square

weight deviation. The weight deviation is assumed to have

a Gaussian distribution. In the first method the expectation

of the product of the gain and weight deviation is considered

to be separable. In the second method the expectation of the

product of the gain and weight deviation is derived without as-

suming the separability. The second method while more com-

putationally intensive offers some improvement in the ability

to predict the performance of the simplified PNLMS algo-

rithm. Further analysis shows that the improvement comes

mainly from the direct calculation of the E{g2
i (k)} instead of

the assumption in (7).
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Fig. 2. Learning curve of simplified PNLMS algorithm ρ =
10−2 using ‘Nonseparable Approach’ theory
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