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ABSTRACT
This paper presents a procedure for implementing fully adaptive 
interpolated FIR filters with removed border effect. The proposed 
approach allows reducing the steady-state mean-square error by 
eliminating the main sources of performance degradation from the 
adaptive interpolated FIR filters. In addition, the computational 
effort needed for implementing such a procedure is very small. 
Simulation results confirm the effectiveness of the proposed 
approach.

Index Terms—Adaptive filters, adaptive signal processing, 
interpolation, least mean square methods.

1. INTRODUCTION 
Interpolated finite impulse response (IFIR) filters are a 
computationally efficient alternative to implement FIR filters [1]. 
The idea of such a scheme is to realize a FIR filter through a 
cascade structure composed of a sparse filter, with reduced number 
of coefficients, and an interpolator filter. The latter one recreates 
(in an approximate way) the removed coefficients of the sparse 
filter. Different adaptive implementations of IFIR filters have been 
considered in the open literature for several applications, such as 
line echo canceling [2]-[4], active noise and vibration control [5], 
and audio processing in digital hearing aids [6]. 

The use of adaptive IFIR (AIFIR) filters is of particular 
interest due to the reduced number of coefficients to be adapted as 
compared with the standard FIR approach. However, the obtained 
computational saving gives rise to a higher steady-state 
mean-square error (MSE) value. This poorer performance can be 
amended by using adaptive interpolators instead of fixed ones, 
resulting in a fully adaptive IFIR structure [7]-[9]. Another source 
of performance degradation in IFIR filters is the border effect, 
arising from the equivalent IFIR structure [10]. A procedure 
discussed in [11] permits to remove such an effect in AIFIR filters 
as using fixed interpolators, resulting in a considerable 
performance improvement. In this work, a procedure to implement 
fully adaptive IFIR filters with removed border effect is presented. 
The focus of such an approach is to improve the AIFIR structure 
performance. 

This paper is organized as follows. Section 2 describes briefly 
the IFIR filters, their implementations by considering input or 
output interpolators, and their equivalent structure. In Section 3, a 
generalized procedure for removing the border effect in IFIR 
structures is discussed. Section 4 describes the fully adaptive IFIR 
implementation with removed border effect. Section 5 presents 
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some numerical simulations. Finally, Section 6 draws the 
conclusions of this research work. 

2. IFIR FILTERS 
The block diagram of an IFIR filter is shown in Fig. 1, where ( )x n
and ( )y n  represent, respectively, the input and output signals. The 
interpolator, denoted by i , consists of a FIR filter with a memory 
size M  and a coefficient vector given by 

T
0 1 1[       ]Mi i ii

The interpolator output ( )x n  is related to the input signal by  

( ) ( )x n x n i

where “ *” denotes the convolution operation. The block sw  in 
Fig. 1 represents a sparse filter with memory size N . The 
coefficient vector for such a filter is obtained by setting to zero 

1L  of each L coefficients of a standard FIR filter (L denotes the 
interpolation factor). Thus, by considering the coefficient vector of 
a standard FIR filter given by 

T
0 1 2 1[         ]Nw w w ww

the following sparse coefficient vector can then be obtained: 

s

T
s 0 2 ( 1)[  0   0   0   0  0] .L L N Lw w w ww

The number of nonzero coefficients in (4) is 

s ( 1) 1N N L

with  representing the truncation operation. The output signal 
of the structure is obtained as follows: 

T
s s( ) ( ) ( )y n x n nw x w

with the interpolated input vector given by 
T( ) [ ( )  ( 1)  ( 2)    ( 1)] .n x n x n x n x n Nx

( )y n( )x n( )x n
i sw

Fig. 1. Block diagram of an IFIR filter.

Another alternative IFIR implementation is shown in Fig. 2. 
Note that in this one the blocks of Fig. 1 are interchanged. In 
Fig. 2, ˆ( )x n  represents the input signal filtered by the sparse filter.
Now, the output signal is 

Tˆ ˆ( ) ( ) ( )y n x n ni x i
with  
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Tˆ ˆ ˆ ˆ ˆ( ) [ ( )  ( 1)  ( 2)    ( 1)]n x n x n x n x n Mx
and

sˆ( ) ( ) .x n x n w

isw
( )y n( )x n ˆ( )x n

Fig. 2. Block diagram of an IFIR filter with output interpolator. 

Both IFIR implementations (Figs. 1 and 2) share the same 
( 1)-dimensionalN M  equivalent coefficient vector, given by 

i sw i w

As described in [10], it is possible to rewrite (11) as a 
matrix-vector product; then, by defining an 
[( 1) ]-dimensionalN M N  interpolation matrix as 

0

1 0

2 1 0

1 2 3 0

1 2 1

1 2

1

0 0 0
0 0

0

0
0 0

0 0 0

M M M

M M

M

M

i
i i
i i i

i i i i
i i i

i i

i

I

from (11) and (12), one can write 

i s.w Iw

A matrix sW , with dimensions ( 1)N M M , analogous to 
(12), can be constructed from (4) [12], such that 

i s sw Iw W i

Further, by considering an input vector with 1N M  samples of 
the input signal, given by 

T
e ( ) ( )  ( 1)    ( 2)n x n x n x n N Mx

the overall input-output relationship for the IFIR filter can be 
expressed as 

T T
e s e s( ) ( ) ( )y n n nx Iw x W i

Note that (14), (15), and (16) are valid for both implementations 
considered in Fig. 1 and 2. 

The task of the interpolator filter in an IFIR structure is to 
recreate the zeroed coefficients in (4) by using their neighbors 
[10]. The coefficient number M  of the interpolator is a function 
of factor L, obtained from 

( ) 1 2( 1) 2 1M L L L

For instance, an interpolation factor 2L  results in 3M  and 
T

0 1 2i i ii . Thus, for a sparse filter considering 5N , the 

coefficient vector is given by T
s 0 2 4[   0    0  ]w w ww  and the 

equivalent coefficient vector, obtained from (14), is 
T

i 0 0 1 0 2 0 0 2 1 2 2 2 0 4 1 4 2 4    ( )   ( )    .i w i w i w i w i w i w i w i w i ww

Then, by using a linear interpolator T[0.5 1 0.5]i  in (18), results 
in [1] 

T
i 0 0 0 2 2 2 4 4 40.5   0.5 0.5   0.5 0.5   0.5 .w w w w w w w w ww

Note from (19) that: (i) the zeroed coefficients of the sparse filter 
are recreated, which are indicated by boxes; and (ii) new 
coefficients appear, the underlined ones, as a consequence of the 
border effect. As a second example, for 3L  and 7N , one 
obtains in s 3N , 5M , T

0 1 2 3 4[ ]i i i i ii , s 0 3[ 0 0w ww
T

60 0 ] .w  Then, the equivalent coefficient vector is 

i 0 0 1 0 2 0 3 0 0 3 4 0 1 3
T

2 3 3 3 0 6 4 3 1 6 2 6 3 6 4 6

i w i w i w i w i w i w i w

i w i w i w i w i w i w i w i w

w

where the recreated coefficients are indicated by boxes, while the 
underlined ones arise from the border effect. 

3. GENERALIZED BORDER EFFECT REMOVAL FOR 
IFIR FILTERS 

The border effect, described in Section 2, leads to an important 
performance loss in several applications [10], [11]. In [11], a 
procedure for removing such an effect in IFIR structures 
considering input interpolators is described, resulting in the 
removed border effect IFIR (RBEIFIR) filter. This procedure is 
presented there for a particular case ( 2)L  and is based on a 
transformation matrix T, applied to the equivalent coefficient 
vector, given by [12] 

i i s sw Tw TIw TW i

where iw  is the equivalent coefficient vector with the removed 
border effect. 

In this section, the aforementioned procedure is generalized 
for different values of L  and for the structure having an output 
interpolator. Thus, by taking into account that the first 1L  and 
last 1L  coefficients of the equivalent coefficient vector arises 
from the border effect [see (18), (19) and (20)], the following 
generalized transformation matrix, with dimensions 

( 1),N N M  can be written as: 

1 columns  columns 1 columns

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0
0 0 0 0 1 0 0
L N L

T

By using (21) and (22), the equivalent coefficient vector with the 
removed border effect is obtained. Then, considering (20) for the 
previous example, one obtains 

i 2 0 3 0 0 3 4 0 1 3 2 3
T

3 3 0 6 4 3 1 6 2 6 .

i w i w i w i w i w i w

i w i w i w i w i w

w

The border effect removal procedure is carried out by 
replacing the input vector (of the output block of the IFIR 
structure) by a new modified one. For the case of an 
input-interpolator-IFIR structure, the input vector of the second 
filter (sparse), given by (7), is replaced by 

T T T( ) ( ) ( )n n nx I T x I x
with 

T( ) ( )  ( 1)    ( 1)n x n x n x n Nx
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For the case of the output-interpolator-IFIR structure, the vector to 
be replaced is the input vector of the interpolator filter. Thus, (9) is 
replaced by 

T T
sˆ ( ) ( )n nx W T x

The computational cost for implementing the border effect 
removal procedure is small [11]. For instance, by considering an 
input-interpolator-IFIR structure, 2L , 3M , 5N , and 

T
0 1 2[ ]i i ii , the modified input vector is given by 

T
1 2

T
m

T T T
m

T
m

0 1

( ) ( 1)

( )
( ) ( ) ( 1)

( 2)
( 3) ( 4)

i x n i x n

n

n n n

n
i x n i x n

i x
x I T x i x

i x

with 
T

m ( ) [ ( ) ( 1) ( 1)]n x n x n x n Mx
To obtain (27), at each iteration, the following operations are 
required: 

i) Two multiplications and one sum to obtain the first element of 
the current iteration. 

ii) One multiplication and one sum to obtain the second element 
of the current iteration from the first element of the previous 
iteration.

iii) One multiplication and one subtraction to obtain the last 
element of the current iteration from the last but one element 
of the previous iteration. 

Therefore, for the case considered, 4 multiplications and 3 sums 
are required for computing (27); meanwhile, the standard IFIR 
structure requires 3 multiplications and 2 sums. In general, 

1M L  multiplications and 2M L  sums are required per 
iteration for computing (27). By comparing (27) with (7) 2 2L
more operations are necessary. Since L  is small, the increase in 
computational burden becomes negligible. 

4. FULLY ADAPTIVE IFIR FILTERS WITH REMOVED 
BORDER EFFECT 

The use of a border effect removal procedure in AIFIR filters is 
straightforward, resulting in the adaptive removed border effect 
IFIR (ARBEIFIR) filter [11]. Since the use of an adaptive 
interpolator can improve the structure performance, in this section, 
the fully adaptive IFIR (FAIFIR) structure is derived [7]-[9]. The 
disadvantages of such an approach are related to the cascaded 
structure adaptation process, as described in [12]. 

The update expression for the fully adaptive RBEIFIR 
(FARBEIFIR) structure is more complex than for the ARBEIFIR 
one. This is due to the fact that the FARBEIFIR filter is a cascaded 
adaptive structure and the direct application of the LMS 
expressions is not possible. Thus, a similar approach as in [12] 
must be adopted. By using (16), (24), and (25) the error signal is 
given by [12] 

T T T
s

T T T
s

( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ).

e n d n n n n

d n n n n

w I T x
i W T x

Note that in (29), the vectors and matrices depending on the 
coefficients of the IFIR filter are now time varying. Similarly to 
[12] and considering (29), the LMS update expression for the 
sparse filter coefficients is written as 

T T
s s 1( 1) ( ) 2 ( ) ( ) ( )n n e n n nw w I T x

and for the interpolator, as 
T T

2 s( 1) ( ) 2 ( ) ( ) ( )n n e n n ni i W T x

The implementation of (30) and (31) involves matrix-vector 
products, resulting in a high computational cost [12]. However, the 
same simplifying approximations adopted in [12] can also be used 
here. Then, the update expressions for the LMS FARBEIFIR 
structure becomes 

s s 1( 1) ( ) 2 ( ) ( )n n e n nw w x
and

2 ˆ( 1) ( ) 2 ( ) ( )n n e n ni i x
It is important to highlight that (32) and (33) are approximate 
expressions and a special care must be taken for the choice of the 
step-size and control parameters [12]. Expressions for the 
normalized LMS (NLMS) algorithm are obtained analogously to 
(32) and (33), considering the procedure presented in [12]. Such 
expressions are valid for adapting both input- and 
output-interpolator-IFIR structures. By using the 
output-interpolator-IFIR structure a lower computational burden is 
obtained. Such a characteristic is also observed in the 
implementation of the standard FAIFIR structure. 

5. SIMULATION RESULTS 
In this section, numerical simulations are presented aiming to 
assess the performance of the FARBEIFIR structure, as compared 
with other implementations of adaptive IFIR filters (AIFIR, 
FAIFIR and ARBEIFIR). The used examples refer to a system 
identification problem [14]. The performance is assessed in terms 
of the MSE characteristic, obtained from Monte Carlo simulations 
(average of 100 runs). The interpolation factor for all examples is 

2L  and the implementations considering fixed interpolators 
(AIFIR and ARBEIFIR) use a linear interpolator given by 

T[0,5 1 0,5]i . The input signal is white and Gaussian with 

variance 2 1x  (similar results in terms of the steady-state MSE 
value are obtained for colored inputs). An additive Gaussian noise 
with variance 2 810z  is added to the output of the plant 
( 80 dB).SNR
Example 1: In this example, the plant impulse response p1( )w n  is 
illustrated in Fig. 3. The memory size of the adaptive filters is 

71N  and they are adapted using the NLMS algorithm with 

1 0.5 , 2 0.05  and 8
1 2 10  [12]. The obtained 

results are shown in Fig. 4. One observes a better performance of 
the FARBEIFIR structure (note that its steady-state MSE value is 
very close to the noise variance) in comparison with the other 
ones. 
Example 2: In this example, the coefficients of the plant p2( )w n
are illustrated in Fig. 5. One can verify here that the impact of the 
border effect is smaller due to the fact that the first and the last 
coefficients of the plant are equal to zero [11]. The memory size of 
the adaptive filters is 101N , adapted using the LMS algorithm 
with 1 2 max0.1 , where max  is the upper stability bound 
for the step-size parameter (experimentally determined). In Fig. 6, 
the obtained MSE curves are depicted. Now the performance of 
the different IFIR structures are very close to each other, noting a 
better performance of the FARBEIFIR structure. Such a fact 
corroborates the robustness of the proposed implementation, 
presenting the best performance among the IFIR structures even if 
the border effect does not occur. 
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6. CONCLUSIONS 
In this paper, a new procedure for implementing fully adaptive 
IFIR structures with the removed border effect is presented. In 
comparison with the other implementations of adaptive IFIR 
structures available in the literature, the proposed approach 
presents a considerable improvement in the MSE behavior with a 
slight computational cost increment. 
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Fig. 3. Example 1. Plant impulse response. 
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Fig. 5. Example 2. Plant impulse response. 
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