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ABSTRACT

In this work, a statistical noise-constrained least mean fourth (SN
CLMF) adaptive algorithm is proposed. Based on the fact that
in many practical applications an accurate estimate of the fourth-
order moment of the noise is available, or can be easily estimated,
the learning speed of the LMF algorithm can be then increased
considerably by adding a constraint to it. This noise constrained
LMF algorithm can be seen as a variable step-size LMF algorithm.
Moreover, the concept of energy conservation is used to carry out
the rigorous steady-state analysis. Finally, a number of simula-
tions are carried out to corroborate the theoretical findings, and
as expected, improved performance is obtained through the use of
this technique over the traditional LMF algorithm.

Index Terms—Adaptive filters, LMS, LMF, Constrained op-
timization, Noise constraints, SNCLMF algorithm.

1. INTRODUCTION
It is well known that the LMF algorithm [1] belongs to a class of
stochastic gradient descent based algorithms and it seeks to mini-
mize the mean fourth error, which is a convex (and thus unimodal)
function of the adaptive weight vector. The power of the LMF
algorithm, which has been used extensively in a variety of appli-
cations, lies in its faster initial convergence and lower steady state
error relative to the LMS algorithm [2]-[4]. Still there continues to
be an interest in improving the performance of the LMF algorithm.

It is also well established that the learning speed of any adap-
tive filtering algorithm can be increased by adding a constraint to it
as in the case of the normalized LMS (NLMS) [5] and the normal-
ized least-mean-fourth (NLMF) [6] algorithms. Recently an LMS-
type algorithm that exploits the knowledge of channel noise vari-
ance for identification and tracking of FIR channels, called noise
constrained LMS (NCLMS) algorithm, was proposed [7]. Better
convergence rate was made possible due to the presence of three
independent variables.

When partial knowledge of the channel is available we should
try to use it to improve the performance of adaptive filters, pro-
vided it doesn’t increase complexity and/or decrease robustness
unduly. Here, we propose an LMF-based algorithm for identifi-
cation of FIR channels which exploits assumed knowledge of the
channel noise statistics. The main aim of this work is to derive the
SNCLMF adaptive algorithm, analyze its convergence behaviour,
and assess its performance in different noise environments. More-
over, the concept of energy conservation is used to carry out the
rigorous steady-state analysis [8].

2. ALGORITHM DEVELOPMENT
To develop the proposed SNCLMF algorithm a time-invariant chan-
nel model is considered to be:

yk =

N−1∑
i=0

cixk−i + nk = cT xk + nk, (1)

where {xk} is a stationary input process with mean zero and vari-
ance σ2

x, {nk} is a stationary noise process with mean zero and
variance σ2

n and c corresponds to a channel/impulse response with
N taps. Under the above model, minimizing the mean-fourth error
[1], that is,

ε(w) = E[e4
k] = E[(yk −wT xk)4], (2)

over w gives the optimal weight value w = c. We can also notice
that although the optimal weight does not depend on the channel
noise statistics, this does not mean that a (partially) adaptive al-
gorithm for estimating the optimum weight cannot exploit knowl-
edge of noise statistics. In particular, away from the optimum, the
knowledge of noise statistics might be useful in selecting search
directions and/or step-size in an adaptive algorithm. This will be
made clear as we proceed.

Minimize ε(w) overw subject to the constraint ε(w) = Jmin,
which is the fourth-order moment of the noise, and is defined as
Jmin = 3σ4

n for Gaussian noise (0, σ2
n), Jmin = 24b4 for Lapla-

cian (0, 2b2) and Jmin = Δ4/5 for uniform noise (0, Δ2/3).
Therefore, the lagrangian for this problem can be set up as:

ε1(w, λ) = ε(w) + λ(ε(w)− Jmin). (3)

The critical values of ε1(w, λ) are w = c and λ is arbitrary.
Note that although there is no spurious critical w, the fact that
there is no unique (or even constrained) critical λ will present
problems for an iterative/adaptive algorithm. To correct this, we
subtract γλ2(where γ > 0) from ε1(w, λ) to get the augmented
Lagrangian:

ε2(w, λ) = ε(w) + γ(λ(ε(w)− Jmin)− λ2). (4)

The solution of the above equation for the augmented Lagrangian
is obtained using a procedure similar to that in [7], and can be
shown to result in the SNCLMF adaptive algorithm:

wk+1 = wk + αke3
kxk, (5)

αk = α(1 + γλk), (6)

λk+1 = λk + β
{1

2
(e4

k − Jmin)− λk

}
, (7)
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where α, β, and γ are positive parameters providing more control
over the performance of the proposed algorithm. It can be ob-
served from (6), that the LMF algorithm is recovered when γ = 0.
moreover, as can be seen from (5)-(7), that the SNCLMF is a type
of a variable step-size LMF algorithm.

3. CONVERGENCE ANALYSIS OF THE SNCLMF
ALGORITHM

The weight error vector of SNCLMF is defined as vk = c−wk.
Therefore, equation (5) becomes:

vk+1 = vk − αke3
kxk. (8)

We will now define two kinds of estimation errors known as a-
priori given by eak = xT

k vk and a-posteriori given by epk =
xT

k vk+1. A new relation involving a-priori and a-posteriori esti-
mation errors is given by:

epk = eak − αk||xk||2e3
k. (9)

Let us define a new term μ̄k = 1
||xk||2 and substitute expression

(9) in equation (8), then the new equation becomes:

vk+1 = vk − μ̄kxk[eak − epk]. (10)

By evaluating the energies on both sides, we obtain:

||vk+1||2 + μ̄k|eak|2 = ||vk||2 + μ̄k|epk|2. (11)

This important fundamental energy relation developed previously
in [8] will now be used to evaluate Excess MSE (EMSE) of the
proposed statistical noise-constrained LMF at steady state. As we
all know, an adaptive filter is said to operate in steady state iff:

lim
k→∞

E[||vk+1||2] = lim
k→∞

E[||vk||2]. (12)

Let us take the expectation on both sides of equation (11). At
steady state, we get:

E[μ̄k|eak|2] = E[μ̄k|eak − αk

μ̄k
e3

k|2]. (13)

Assuming that the a-priori estimation error eak and the noise pro-
cess nk are independent and are related through: ek = eak + nk .
It is obvious from this relation that the excess mean-square error
EMSE, and hence can be defined as:

EMSE = lim
k→∞

E[|eak|2] = J∗ (14)

At steady-state, the third and higher powers of eak become very
small and can be ignored [8]. Let E[nm

k ] = δm
n and E[αk] =

αk. After some straight forward algebraic manipulations, equation
(13) can be rewritten as:

6σ2
nαkJk = α2

kTr(R)[15δ4
nJk + δ6

n]. (15)

Themean square multiplier λ2
k+1 can be obtained by taking square

on both sides λk+1 and then take expectation to get:

λ2
k+1 = (1− β)2λ2

k + β(1− β)[E[e4
k]− Jmin]λk

+
β2

4
[E[e8

k]− 2JminE[e4
k] + J2

min] (16)

where,

E[e4
k] = δ4

n + 6σ2
nJ∗ + (3 + 6ε)J2

∗ , (17)
E[e8

k] = 70J2
∗ δ4

n + 28J∗δ
6
n + δ8

n, (18)

and ε is a variable bounded by (1/N) ≤ ε ≤ 1. At steady state,
equation (15) becomes:

6σ2
nα∗J∗ = α2∗Tr(R)[15δ4

nJ∗ + δ6
n]. (19)

Let v∗ denote the limiting value of vk ( as (k →∞)) with a like
notation for other sequences and their limits (which are henceforth
assumed to exist). Therefore, we can write:

v∗ = 0, (20)

λ∗ =
1

2
(6σ2

nJ∗ + 9J2
∗ ), (21)

α∗ = α
{

1 +
γ(6σ2

nJ∗ + (3 + 6ε)J2
∗ )J∗

2

}
, (22)

α2∗ = α2(1 + 2γλ∗ + γ2λ2∗). (23)

Substituting from (20) to (23), and (16) with (k → ∞) in equa-
tion (19) and after some rigorous algebra we obtained a 5th order
equation for the excess MSE J∗ of the form,

AJ5
∗ + BJ4

∗ + CJ3
∗ + DJ2

∗ + EJ∗ + F = 0, (24)

where

A =
−(3 + 6ε)2Tr(R)αγ2

2− β

{
1− β

2

}
15δ4

n, (25)

B =
−12(3 + 6ε)Tr(R)αγ2

2− β

{
1− β

2

}
15σ4

nδ4
n, (26)

C = 27γσ2
n −

{
135αγδ4

nTr(R) +
15αγ2δ4

nTr(R)

(2− β){36σ4
n(1− β)

2
− 2(3 + 6εβJmin

4

}

+
(1− β)12(3 + 6ε)αγ2σ4

nTr(R)δ6
n

2(2− β)

}
, (27)

D = 18σ4
nγ −

{
90αγδ4

nTr(R) +
15αγ2βδ4

nTr(R)

4
(28δ6

n

−12σ2
nJmin) + 9αγδ6

nTr(R) +
αδ6

nTr(R)γ2

2− β{36σ4
n(1− β)

2
− 2(3 + 6ε)βδ4

n

4

}}
, (28)

E = 6σ2
n −

{
15αδ4

nTr(R) +
15αβγ2δ4

nTr(R)

4(2− β)
(δ8

n

−J2
min) + 6αγσ2

nTr(R)δ6
n +

αγ2Tr(R)δ6
n

2− β

(28δ6
n − 12σ2

nJmin)

}
, (29)

F = −Tr(R)

{
αδ6

n +
αγ2βδ6

n

4(2− β)

{
δ8

n − J2
min

}}
. (30)

Assuming αTr(R) << 1, it can be proved that (24) has a root
around 0, i.e. , J∗ << 1. Therefore, higher power of J∗ are
ignored and we are left with J∗ = −F

E
. Hence, an asymptotic
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approximation for the excess MSE of the SNCLMF in the presence
of AWGN can be written as:

JSNCLMF ≈ J∗ ≈ αTr(R)15σ6
n

6σ2
n

[
1 +

γ2β

2(2− β)
(48σ8

n)

]
.

(31)
The proposed SNCLMF algorithm has three tuning parameters
namely α, β, and γ which can be used to control the speed of
convergence whereas in case of LMF we have only one tuning pa-
rameter namely the step-size. It should also be noted that if we put
γ = 0 in the above expression, then, we end up getting the EMSE
of the LMF algorithm [1].
•Mean-square convergence of the step-size:
From [4], it is well known that the LMF converges in the mean
square sense if the step-size α satisfies:

0 < α <
σ2

n

9δ4
nTr(R)

. (32)

Now assuming the mean step-size αk and the mean square step-
size α2

k converge, it can be shown that the SNCLMF converges
in the mean square sense if:

α2
k

αk
<

σ2
n

9δ4
nTr(R)

. (33)

•Adaptation Time Constants and Comparisons:
Form [1], the largest time constant for LMF is:

τLMF ≈ 1

6ασ2
nρmin

, (34)

where ρmin is the smallest eigenvalue of R. To get the time con-
stant for the SNCLMF, we will assume that the step-size αk adapts
much faster than the weights vk (this makes sense otherwise, the
variable step-size would not be useful). In fact, we will assume
that αk is actually converged in the mean at each time instant so
that we can get the time constants by replacing α by αk in (34).
Hence, from (6) and using the fact that E[e2

k] >> σ2
n, the largest

time constant for SNCLMF can be shown to be:

τNCLMF ≈ 1

6σ2
nαρmin

{
1 +

γE[e2
k
]

2

} . (35)

We now observe that by fixing α, increasing γ, and decreasing
β such that the product γ2β remains constant, τSNCLMF can be
decreased to a small value without increasing the misadjustment.
On the other hand, τLMF can be decreased only by increasing the
step-size α or we can say by increasing the misadjustment of the
LMF algorithm.

Furthermore, τSNCLMF can be decreased only to some fixed
value without increasing the misadjustment, no matter how the pa-
rameters were chosen. This demonstrates analytically within the
limitations of the approximations employed how the SNCLMF al-
gorithm can exploit the knowledge of the noise statistics to in-
crease the learning rate over the LMF algorithm.

4. SIMULATION RESULTS
In this section, the performance analysis of the LMF and the SNCLMF
algorithms is investigated in an unknown system identification prob-
lem with c = [0.227, 0.460, 0.688, 0.460, 0.227]T . The objective
of designing a constrained algorithm is to achieve a faster conver-
gence rate which is a major performance measure. Three different

noise environments have been considered namely Gaussian, Uni-
form and Laplacian for an SNR=20 dB.

In AWGN environment, as shown in Fig. 1, the proposed al-
gorithm achieved the same steady-state in approximately 7000 it-
erations earlier than the LMF algorithm. This is also assessed in
Fig. 2 where the third-tap of the SNCLMF converges faster than
that of the LMF algorithm. This was expected due to the fact that
the SNCLMF algorithm can be considered as a variable-step-size
algorithm; Fig. 3 depicts this bahavior.
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Fig. 1. Comparison of the convergence speed of the LMF and the
proposed SNCLMF in AWGN environment.
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Fig. 2. Comparison of the learning curves for the third-tap of the
LMF and the proposed SNCLMF in AWGN environment.

Figure 4 depicts the effect of an inaccurate estimate of the
noise statistic on the performance behavior on the f the SNCLMF
algorithm. As can be seen for this figure, no deterioration oc-
curred. Furthermore, an important advantage of the SNCLMF
algorithm is demonstrated in Fig. 5 where it is observed that the
convergence speed can be increased considerably by increasing γ
and decreasing β (for a constant γ×β) while the steady-state mis-
adjustment is kept constant.

Finally, the effect of the noise environment on the performance
of the SNCLMF is depicted in Fig. 6. A better performance is
obtained when the noise statistics are uniform.

5. CONCLUSION
In this work, we proposed a new constrained LMF-type algorithm
(SNCLMF) for wireless environments and studied both analyti-
cally and by simulations its performance. Our study included a
thorough comparison of the proposed algorithm (SNCLMF) with
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Fig. 3. Behavior of time-varying step-size of SNCLMF algorithm
in AWGN environment.
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Fig. 4. The effect of an inaccurate estimate of noise statistics on
the SNCLMF algorithm in AWGN environment.
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Fig. 5. The effect of γ and β on the convergence behavior of the
SNCLMF algorithm in AWGN environment.
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Fig. 6. Convergence behavior of the SNCLMF algorithm in pres-
ence of Gaussian, Uniform and Laplacian environments with an
SNR=10 dB.

the well-established LMF algorithm and showed that, overall, the
SNCLMF enjoys a superior performance in both transient and steady-
state regimes for different environments. This superior perfor-
mance was achieved with only a slight increase in computational
complexity. Also, similar behavior is obtained for other noise en-
vironments, e.g., uniform and Laplacian, but due to space limi-
tations these are reported here. Finally, a zero noise constrained
LMF (ZNCLMF) algorithm with Jmin = 0 in (7) can also be de-
rived.
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