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ABSTRACT 

In this paper a new block LMS algorithm is introduced. This 
algorithm is based on a fast HOT convolution developed by our 
group [1]. We call our algorithm the block HOT-DFT LMS 
algorithm. Our algorithm uses the premise that the filter size is 
much smaller than the block size. Our developed algorithm is 
very similar to the block DFT LMS algorithm, but provides a 
reduced computational complexity of about 30%. The 
computational efficiency of the block HOT-DFT LMS algorithm 
is verified and its convergence analysis is analyzed. 

Index Terms— Adaptive filtering, Hirschman Uncertainty, 
Transform domain LMS algorithm 

1. INTRODUCTION 

The computational saving of any fast block LMS algorithm 
depends on how efficiently each of the two convolutions 
involved in the LMS algorithm are calculated [2], [3]. When the 
DFT convolution is used, the block DFT LMS algorithms result. 
They are most efficient when the block and filter sizes are equal. 
Recently, we developed a fast convolution based on the 
Hirschman Optimal Transform (HOT) [1]. The HOT 
convolution is more efficient than the DFT convolution when the 
disparity in the lengths of the sequences being convolved is 
large. The block HOT-DFT LMS algorithm used the fast HOT 
convolution to calculate the filter output and update the weights.

The HOT, similar to the DFT, is a newly developed transform 
[4], [5]. For example, the 32-point HOT matrix is 
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where 3=e-j2 /3. In general, the NK-point HOT basis are 
generated from the N-point DFT basis as follows. Each of the 
DFT basis functions are interpolated by K and then circularly 
shifted to produce the complete set of orthogonal basis signals 
that define the HOT. The fact that the HOT basis has many zero-

valued samples, and their resemblance to the DFT basis 
sequences, makes the HOT computationally attractive. Recently 
the HOT transform was used to develop the HOT LMS 
algorithm [6], [7], which is a transform domain LMS algorithm, 
and the HOT block LMS algorithm [8], which a fast block LMS 
algorithm. The block HOT-DFT LMS algorithm presented here 
is different from the HOT block LMS algorithm presented in [8]. 
Our block HOT-DFT LMS algorithm developed in this paper 
uses the fast HOT convolution [1] which is summarized in the 
next paragraph. 

The main idea behind the HOT convolution is to partition the 
longer sequence into sections of the same length as the shorter 
sequence and then convolve each section with the shorter 
sequence efficiently using fast DFT convolution. The relevance 
of the HOT will become apparent when the all of the 
(sub)convolutions are put together concisely in a matrix form.     

The following notations are used in this paper. Nonbold 
lowercase letters are used for scalar quantities, bold lowercase 
for vectors and bold uppercase for matrices. Nonbold uppercase 
letters are used for integer quantities such as length or 
dimensions. The lowercase letter k is reserved for the block 
index. The lowercase letter n is reserved for the time index. The 
time and block indexes are put in brackets, whereas subscripts 
are used to refer to elements of vectors and matrices. The 
subscripts F and H are used to highlight the DFT-domain and 
HOT-domain quantities, respectively. In Section 2, the HOT-
DFT block LMS algorithm is developed. Its computational cost 
is analyzed in section 3. Section 4 contains the convergence 
analysis. Simulations are provided in Section 5. Finally, we 
conclude. 

2. DEVELOPMENT OF THE BLOCK HOT-
DFT LMS ALGORITHM 

Recall that in the block LMS algorithm, two convolutions are 
required. The first convolution is the convolution between the 
filter impulse response and the filter input. This one simply 
computes the output of the filter in each block. The second 
convolution is a convolution between the filter input and the error 
and is needed to estimate the gradient in the filter weight update 
equation. If the filter size is much larger than the block size, then 
the fast HOT convolution can be used to calculate the first 
convolution. However, the second convolution is a convolution 
between two signals of the same length, a situation where the fast 
HOT convolution is not superior to regular convolution. We 
propose a modification to the HOT convolution to improve this 
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situation. The fast HOT convolution, as described in [1], is based 
on the overlap-and-add method [9]. Since the overlap-save 
method is more convenient in the block LMS algorithm, the fast 
HOT convolution is developed with the overlap-save method and 
then applied to the block LMS algorithm. Let N be the filter 
length and L = NK be the block size, where N, L, and K are all 
integers. Let 

0 1 1ˆ ( ) ( ) ( ) ( ) T
Nk w k w k w kw       (2) 

be the filter tap-weight vector in the kth block and 

( ) ( 1) ( 2) ( 1) Tk u kL N u kL N u kL Lu (3)

be the vector of input samples needed in the kth block. This vector 
is then is divided into K+1 N-overlapping sections. Such sections 
can be formed by multiplying u(k) with the following matrix 
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The vector z(k) = Ju(k) will be then of length 2NK. Let the matrix 
P be a 2NK x 2NK matrix such that 
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where zi(k) is the ith polyphase component of z(k). Then take the 
2NK-point HOT of Pu(k). Post append the tap-weight vector w(k)
with N zeros. The resulting vector is denoted by w(k). The DFT 
of w(k) is given by 

2( ) ( ).F Nk kw F w                             (6) 

Let eK be a column vector of all ones. i.e. 
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then the 2NKx2N matrix E is given by 
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Pointwise multiply the vectors EwF(k) and HPu(k) and then take 
the inverse HOT of the resulting vector. Define the matrices 
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According to the overlap-and-save method, the output of the 
adaptive filter in the kth block 

( ) ( ) ( 1) ( 1)k y kL y kL y kL Ly         (11) 

is given by 
-1

F(k) =  (k) (k) ,y GPH Ew HPu               (12) 

The symbol  indicates pointwise matrix multiplication, and 
throughout this discussion, pointwise matrix multiplication takes 
a higher precedence than does conventional matrix multiplication. 
The desired signal vector and the filter error in the kth block are 
given by 
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and
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respectively, where 
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The filter update equation is given by 
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The sum in equation (16) can be efficiently calculated using an L-
point DFT of the error vector e(k) and input vector u(k).
However, the L-point DFT of u(k) is not available and only the 
2N-point DFTs of the K sections of u(k) are available. Therefore, 
the sum in equation (16) should be divided into K sections as 
follows. 
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For each l the sum over i can be calculated as follows. Form the 
vectors 
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( ) ( ) ( 1) T
l k u kL lK N u kL lK Nu    (18) 

and

( ) 0 ( ) ( 1) .T
l Nk u kL lK e kL lK Ne    (19) 

The sum over i is just the first N elements of the circular 
convolution of el(k) and the circularly shifted ul(k). Therefore, the 
filter update equation according to the HOT-DFT LMS algorithm 
can be written as 
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3. COMPUTATIONAL COST OF THE HOT-
DFT LMS 

Before looking at the convergence analysis of the new adaptive 
filter, we examine its computational cost. To calculate the output 
of the kth block, 2K+1 2N-point DFTs are needed. Therefore, 
(2K+1)2Nlog2(2N)+2NK multiplications are needed to calculate 
the output. To calculate the gradient estimate in the filter update 
equation, 3K 2N-point DFTs are required. Therefore, 
6KNlog22N+2NK multiplications are needed. The total 
multiplication count of our new algorithm is then 
(4K+1)2Nlog2+4NK. The multiplication count for the DFT block 
LMS algorithm is 8KNlog22NK+4NK. Therefore, as N gets 
smaller and K gets higher, the HOT-DFT block LMS algorithm 
becomes more efficient than the DFT block LMS algorithm. For 
example, for N = 100 and K = 10 the HOT-DFT is about 30%
more efficient and for N = 50 and K = 20 the HOT-DFT is about 
40% more efficient. 

4. CONVERGENCE ANALYSIS AF THE HOT-DFT 
LMS 

Now the convergence of the new algorithm is analyzed. Let the 
desired signal be generated using the linear regression model 

( ) ( ) ( ) ( ),o od n w n u n e n                      (22) 

where wo(n) is the impulse response of the Wiener optimal filter 
and eo(n) is the irreducible estimation error, which is white noise 
and statistically independent of the adaptive filter input. In the kth

block the above equation can be written in the DFT domain as 

-1(k) =  (k) (k) ( ).o o
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The lth section of the error is given by 
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Using equation (20), the error in the estimation of the adaptive 
filter weight vector F(k)=Fwo- Fw(k) is updated according to 
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Using equation (24) we can write that 
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Equation (27) can be simplified to 
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Substituting equation (29) into equation (26) we should have 
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Taking the expectation of the above equation yields 
K-1

F F
l=0

( 1)= ( ),HE k E k
N

I UF RF L          (31) 

This result is similar to the result that corresponds to the DFT 
block LMS algorithm [10]. Therefore, the convergence of the 
block HOT-DFT LMS algorithm is similar to that of the block 
DFT LMS algorithm. The convergence speed of the HOT-LMS 
can be improved if we normalize using the estimated power of the 
tap-input vector in the DFT domain [11]. The complete HOT-
DFT block LMS is given by 
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5. SIMULATION OF THE HOT-DFT LMS 
ALGORITHM 

The learning curves of HOT-DFT block LMS algorithm are 
simulated. The desired input is generated using the linear model 
d(n) = w(n)*u(n) + eo(n), where eo(n) is the measurement white 
gaussian noise with variance of  10-8. The input is a first-order 
Markov signal with autocorrelation functions given by r(k) = 
0.9|k|. The filter is low-pass with cutoff frequency of /2 rad. 

Fig. 1 shows the learning curves for the HOT-DFT block LMS 
with these conditions for the LMS and DFT block LMS with N 
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= 4 and K = 3. Fig. 2 shows the same curves for N = 50 and K = 
10. Both figures show that the HOT-LMS block converges at the 
same rate as the DFT block LMS and yet it is computationally 
more efficient. 

Figure 1 The learning curves for LMS, HOT-DFT block LMS, 
and DFT block LMS. N = 4 and K = 3.

Figure 2: The learning curves for LMS, HOT-DFT block LMS, 
and DFT block LMS. N = 50 and K = 10.

 

5. CONCLUSIONS 

This paper has introduced a new block LMS algorithm, the block 
HOT-DFT LMS algorithm, based on the fast HOT convolution. 
The algorithm assumes that the filter size is much smaller than 
the block size. This algorithm reduces the computational 
complexity of the block DFT LMS by about 30% without 
reducing convergence performance. The convergence analysis 
and simulations confirm that the block HOT-DFT LMS and 
block DFT LMS converge at the same rate. Thus, our algorithm 
is suitable for a wide variety of applications as a more efficient 
implementation of the block LMS algorithm.
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