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ABSTRACT

This paper proposes a fast converging adaptive filtering algo-
rithm named Krylov-proportionate normalized least mean-square
(KPNLMS) by extending the proportionate normalized least mean
square (PNLMS) algorithm. PNLMS is known to exhibit faster
convergence than the standard NLMS algorithm for sparse unknown
systems. The proposed algorithm attains similar effects for non-
sparse unknown systems by constructing, based on the multistage
Wiener filter (MWF) representation, an orthonormal basis with
which the unknown system has a sparse structure. The proposed
algorithm can be analyzed by the adaptive parallel variable-metric
projection framework. Numerical studies for non-sparse unknown
systems are presented, comparing KPNLMS and the MWF-based
reduced-rank method.

Index Terms— Adaptive filters, multistage Wiener filter, pro-
portionate NLMS

1. PROBLEM FORMULATION

We consider a simple linear system model:
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�
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� � ��� � � �� (1)

where �� �� ���� ����� � � � � �������
� � �

� is the input vector
at time � with the input process �������, �� � �

� the estiman-
dum (an unknown linear system), ������� the output process, and
������� the noise process. The available is the input and output
processes, and an adaptive filter �������is controlled in a recursive
way by an adaptive algorithm to estimate ��. A common criterion
for the problem is the mean-square error (MSE):
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where ���� denotes expectation. The filter ����� � �
� mini-

mizing (2) is called the minimum mean-square error (MMSE) filter,
characterized by the normal equation widely known as the Wiener-
Hopf equation: ������ � �, where � �� �����

�
� � � �

���

and � �� ������� � �
� . The autocorrelation matrix� is mostly

positive definite due to the presence of noise, and in this case, the
MMSE filter is uniquely given by ����� � ����.

2. PROPOSED ADAPTIVE FILTERING TECHNIQUES

The proposed techniques are constructed by the following three pro-
cedures:

1) whiten the input process �������;

2) construct an orthonormal basis set with which the estiman-
dum is sparse;

3) extract and exploit the sparse structure with no prior informa-
tion.

The main procedures are 2) and 3), and the procedure 1) is an idea
to help the estimandum be sparse in the coordinate obtained through
the procedure 2). In case that the correlation of the input is weak,
the estimandum tends to have a sparse structure in the coordinate
constructed, and in such a case, the procedure 1) can be skipped. For
this reason, we present a scheme composed only of procedures 2)
and 3) due to the lack of space.

2.1. Krylov-Proportionate NLMS Algorithm

In the multistage Wiener filter (MWF) representation [1], the esti-
mandum �� is expressed with the set of basis vectors whose matrix-
form expression is given by
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���� denotes range (column space); and �
�

�
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 for a given ma-
trix
 designates its sub-matrix corresponding to the �th to 
th rows
and the �th to �th columns.

The reduced-rank adaptive filter based on MWF stems from the
idea that the optimal MMSE filter ����� should be approximated
by a vector in 
������ [typically � � � � �]. This suggests
that, if we express ����� with the matrix of the MWF basis set
as ����� � ���, the coefficient vector � � �

� is expected to
be sparse; specifically only first few entries of 
����� would have
large magnitudes. Instead of using the MWF matrix �� , we use the
following simplified orthogonal matrix for computational saving:

� � �
 � � � ���� � (3)

Here, 
 � �
��� is constructed by orthogonalizing the columns

of 	����� ��� associated with an estimated autocorrelation matrix�� � �
��� and an estimated cross-correlation vector �� � �

� ;
and � � �

������	 can be chosen arbitrarily. Note that, if the
input is completely white, i.e., � � ��� for some �� � � (�
denotes the identity matrix), then the dimension of 	����� ��� is
one, and its basis vector is the MMSE filter ����� itself. This
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strongly suggests that ����� should have a sparse structure in the
coordinate associated with the columns of the matrix � especially
when the input signal has fairly weak correlation. Namely, the vector
������ �� ������� � �

� is highly expected to be sparse.
The next step is extraction of the sparseness in the coordinate

associated with the columns of the matrix � . The strategy is to
extend the idea of the proportionate normalized least mean-square
(PNLMS) algorithm [3]; instead of the original version, we adopt
the improved PNLMS (IPNLMS) algorithm proposed in [4]. The
sparseness of ������ will be reflected in ��� �� ���� � �

� .
We thus construct a diagonal matrix adjusting the step size in the
direction of each basis vector as
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Here, ��� and ���� denote absolute value and 1-norm, respectively,
� � ��� �
 a factor to control the amount of proportionality in the
update, and � 	 � a small positive constant for regularization. The
update equation of the adaptive filter is given as follows:
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where�� �� ����
� is a positive definite matrix, �� � �� � �,

� 	� ��� � � ��, is the error function at �th iteration, and 
� �
��� 
� the step size. If � � � , the equation in (6) is nothing but the
IPNLMS algorithm, thus it is a natural extention of IPNLMS (Note:
� � �
	 �
�
 for the 
 used in [4]). Moreover, the equation in (6)
is a special case of the adaptive parallel variable-metric projection
(APVP) algorithm [5] with � � �, �

�
� �

��
�

, �� � � (� denotes
the identity mapping), and �

���
� � �� � �

� � ����
 � ��. Given
�	 � �, which specifies the training period for estimating� and �,
the proposed scheme is summarized below.

Scheme 1 (Krylov-Proportionate NLMS Algorithm)
Given any initial estimates ��	 � �

��� and ��	 � �
� , generate a

sequence ���
���
 �
� with �	 � � recursively as follows.

if � � � � �	

����� �� � ���	����
���
�

� (� � ��� �
: the forgetting factor)
��
��� �� ���

�
	 ��� �
����

�� �� �

else
if � � �	

	 ��
�������� �����
 � ����
� � �

��� : orthonormalized version of �	��

(� � �������� : a random matrix)
end;
�� �� ����

� with�� given in (4)
end;
Filter update: see (6)

Scheme 1 utilizes (i) the orthogonal matrix � constructed with the
Krylov sequence, and (ii) the diagonal matrix �� based on the idea
of PNLMS, thus named Krylov-Proportionate Normalized Least
Mean-Square (KPNLMS) Algorithm. We remark that the proposed
scheme can be generalized with parallel projection in the framework

(a) Original (b) Proposed

Fig. 1. Impact of the proposed transformation�� �� �� �� �
���
� ��

on the error surface contours.

of APVP [5]; the convergence analysis of APVP has been presented
in [6] with the aid of the adaptive projected subgradient method [7].
The analysis in [6] can be applied straightforwardly to Scheme 1. It
should be remarked that, if the input is nonstationary process, then
the computation of ��� and ��� should be performed continuously (or
periodically), based on which the matrix � should be recomputed
periodically.

The matrix-vector multiplication in the filter update involves
����� multiplications, which would not be attractive from an im-
plementation point of view in some applications. Therefore, a sim-
plified scheme with only ���� complexity is presented in Sec. 2.3.

2.2. Error Surface Analysis

To perform an error surface analysis, we left-multiply both-sides of
(6) by������ , yielding

���� � �� � ��
��

��� � ��

����
�

��� � � �� (7)

where �� �� �
����
� �� and �� �� �

���
� ��. The MMSE solution

is modified into ����� characterized by �����
�
� ������ ��

�������.
Suppose for simplicity that the input is uncorrelated, i.e., the

equal-error contours are hyperspheres. Then, left-multiplying �� by
�
���
� �� ��

���
� �� � modifies the contours into hyperellipse whose

axes are the column vectors of � and whose radiuses are propor-
tionate inversely to the diagonal elements of ����� . An example is
illustrated in Fig. 1: Figs. 1(a) and 1(b) draw the equal-error con-
tours of the MSE surfaces for (a) the standard NLMS algorithm and
(b) Scheme 1, respectively. In the figure, it is assumed that � � �,

����� � ���� ��	� , and � �

�
�� ����

���� ��


�
. In this case, � ��

�����
 ��
���
��
��� ������


�
, and ������ � ����������
���	� is sparse.

For Scheme 1, we set�� � diag
������������, where 	
	 for a vector

argument denotes elementwise absolute-value.
Consider the shape of the surface of the MSE function for

Scheme 1 with reference to Fig. 1(b). The minimum point (or cen-
ter) is �����, and, looking from the origin, the slope is ‘steep’ in
the direction of an axis in which ����� has a large magnitude.
This suggests that Scheme 1 steps larger than the standard NLMS
algorithm, leading to fast convergence.
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2.3. Simplification and Computational Complexity

The process to construct the orthogonal matrix � involves the com-
putation for ����� and ����� during a short training-period, and the
computation to construct and orthonormalize the matrix ���� only
once. Hence we neglect such computation.

The main computational burden per iteration is involved with
the construction of the diagonal matrix�� and the filter update. The
computational complexity of the filter update would be ����� with
the matrix�� having no special structure; see [5]. Fortunately, how-
ever, the replacement of�� by the following simplified matrix leads
to ���� complexity with little degradation of performance:

�
���
� �� ��	
������� � � � � � ������ � Æ�� � � � � Æ��� � � �� (8)
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The parameter �� is designed according to the energy relations of 
��
in ��������� ������ and its orthogonal compliment (cf. Sec. 2.4).

The computational complexity for ����
� is approximately 	��

��. Let � �� ��� ��� with �� � �
��� and �� � �

�������

and ����
��� �� ��	
������� � � � � � ������ � � �

��� . Then, defining
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���
� �� ��

���
� �� , the portion ����

� �� involved with the filter
update [cf. (6)] is computed as

�
���
� �� � �� � ���

�
�
���
��� �

� Æ�	

��
��

�

��
�

�
��

� ��

	
�
���
����

�
� �� � Æ��

�
� ��



� Æ���� (11)

where the last equality is verified by���
�
� ����

�
� �� ��� � �

	. From (11), it is seen that����
� �� requires only ��	���� ��	

multiplications (we mostly have 	� � ).
Left-multiplying the both-sides of the filter update by �� , we

obtain the following recursive form:
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Since ����
���
� �� is obtainable through the process of filter update,

the additional part to consider for updating 
�� is
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Fortunately, from (8)–(10), the matrix����
� depends only on the sub-

vector �
��������, which is updated recursively as
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Since ����
����

�
� �� is obtainable through the process of filter update

[see (11)], the update of �
������ requires only 	 � � additional
multiplications.

Consequently, the simplified scheme is obtained by replacing
�� in Scheme 1 by ����

� with (8)–(11) and (14). The overall com-
putational complexity of the simplified scheme, including the design
of the matrix����

� , is ��	 � ��� � �	 at each iteration.

2.4. Energy of ����	 in the Krylov Subspace�������

Scheme 1 is expected to be effective especially when the MMSE so-
lution ����	 has large energy in the Krylov subspace �������
for a small 	. This section is devoted to examine how the au-
tocorrelation matrix � � �

��� and the cross-correlation vector
� � �

� is related to the energy. To quantify the energy, we define
the normalized energy of an arbitrary vector 
 � �

� in a subspace
�	 �

� as follows:

�����
��� ��

���
�
�




�
� ��� ��� (15)

Here, ���
� stands for the metric projection of 
 onto �, deter-
mined uniquely and characterized by 

� ���
�
 � ������


� �
. Let � � �����

�
� be the eigenvalue decompo-

sition of � with an orthogonal matrix �� and a diagonal ma-
trix �� �� ��	
���� ��� � � � � ���, where ��� ��� � � � � �� de-
note the eigenvalues of � corresponding to the column vec-
tors of ��. The simplified notation �� is used to express
������� ��� ���������� � � � �������� � �

��� . The
energy of ����	 in ������� can then be expressed as follows
(all the results are given with no proof in this section for lack of
space).

Proposition 1 Given � �� � and � �� �, the energy of ����	 in
������� is given as

�������	��������� �

������� �
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where 
 �� ��
�����	 � �

� and � �� ��
�������� ��

��
��
�
�
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�
�


�
� ���� .

����� �
� has a closed-form expression ����� �
� � ���
,
where ���� denotes the Moore-Penrose pseudoinverse. In par-
ticular case that ������� has full-column rank so � does,
����� �
� � ����

������
.
From Proposition 1, it is readily verified that

En�����	������� �

�







�
��



��



��

� (17)

where �� �� �� ��� � ����� �� for � � �. The equation
(17) suggests the following. In case that � is an eigenvector of �
(� ����� � ��, �� � �), En�����������	� � �. In case
that � is not an eigenvector of �, En�����������	� depends on
the eigenvalue-spread of �. If the input signal is weakly corre-
lated, then the ‘angle’ between � and ��� is small due to small
eigenvalue-spread, implying that the energy En�����������	� is
close fairly to unity. Conversely, if the input signal is strongly corre-
lated, En�����������	� would be far from unity.

In case that � is not an eigenvector of �, how is the energy
compensated in the other basis vectors of �������? We see from
Proposition 1 that it depends on the angle between � and ����
(� � �� 
 
 
 � �). We further examine the energy in the second
orthonormal-basis vector �� �� ��� ���� � �

� under �� ��
��� ���� ��
 �� �� �.
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Proposition 2 Suppose that ���� �� is not an eigenvector of ����
�� (� �� �� �). Then,
�

En������������� ��
En��������������

�
En����������En��������������

�� En����������
�

Referring to Proposition 2, the loss of energy could partly be
compensated in����� because a small value of En�������������
increases the value of En�������������. However, it is not ex-
pected that the energy loss is fairly compensated because the large
eigenvalue-spread also affects the other energy terms. In our exper-
iments, we observe that, for strongly correlated input signals, ��

�

tends not to have a sparse structure. In such a case, the whitening
process is greatly helpful.

3. NUMERICAL EXAMPLES

This section provides simulation results to show the efficacy of the
proposed scheme. Since Scheme 1 and its simplified version (see
Sec. 2.3) exhibit comparable performance, we employ the simplified
scheme. � � ��� independent simulations are performed for � �
�� with a random estimandum and white input signals under SNR
	� �� 
��

��

�
�
�
���
�
��

�
���
��

� �� dB, where �� 	� ����
� [see

(1)]. The MSE and the system mismatch (i.e., normalized coefficient
error) are computed as averages of the � simulations.

For all the algorithms employed, we set the step size 	� � ���,
�
 � �. For the MWF-NLMS [8], we use � � 
� �� ��, � � ����,
��� � ����� , and ��

�
� �. We use the same parameters for the

proposed scheme. Moreover, for the proposed scheme, we set 
 �
���, � � ������, �� � ���, and �� � ����, �
 � �.

The results are depicted in Fig. 2. We see that, although the
MWF-NLMS algorithm shows the fastest initial learning speed
among the methods tested, its steady-state performance is far from
the optimal. This is because MWF-NLMS seeks for a best solution
in the lower dimensional subspace. On the other hand, the pro-
posed scheme achieves reasonably fast initial learning speed and the
optimal steady-state performance at the same time.

4. CONCLUSION

This paper has proposed the Krylov-proportionate normalized least
mean-square (KPNLMS) algorithm attaining fast convergence with
���� complexity for an arbitrary estimandum. Also the paper has
studied the energy of the MMSE solution in the Krylov subspace;
the energy in a small dimensional Krylov subspace is closely con-
nected to the performance of the proposed scheme. The numerical
examples have demonstrated the significant advantages of the pro-
posed scheme over the existing algorithms.
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