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ABSTRACT

In this paper, we propose an algorithm to improve the perfor-

mance of the mu-law PNLMS algorithm (MPNLMS) for non-

sparse impulse responses. Although the existing MPNLMS

algorithm was recently proposed to achieve optimal propor-

tionate step size for both large and small tap weights, it con-

verges even slower than conventional NLMS algorithm for

dispersive channels. The proposed approach adaptively esti-

mates the sparsity of the impulse response to be identified.

Then the estimation of this sparsity is incorporated into the

IPNLMS algorithm to accordingly adjust its parameters. Sim-

ulation results verify the effectiveness of the proposed algo-

rithm.

Index Terms— Adaptive signal processing, adaptive fil-

ters, NLMS algorithm, PNLMS algorithm, MPNLMS algo-

rithm, acoustic signal processing

1. INTRODUCTION

In some practical applications, such as acoustic echo cancel-

lation (AEC), the transmission channel of interest is sparse

in nature, as only a small percentage of coefficients are ac-

tive and most of the others are zero or close to zero. Clas-

sic adaptive algorithms such as the normalized least-mean-

square (NLMS) algorithm suffer severely from slow conver-

gence speed with these sparse channels.

A new kind of adaptive filtering paradigm, proportionate

adaptation [1], has recently received much attention for sparse

systems. The idea behind proportionate adaptive algorithms

is to update each coefficient of the filter independently by as-

signing each coefficient a step size proportionate to its esti-

mated magnitude. Duttweiler first proposed a proportionate

NLMS (PNLMS) algorithm [2] in the context of echo cancel-

lation. However, its convergence begins to slow dramatically

after the initial fast period. The mu-law PNLMS (MPNLMS)

algorithm was proposed in [3] to resolve this disadvantage.

Instead of using magnitude directly, the logarithm of the mag-

nitude is used as the step gain of each coefficient. Therefore

the MPNLMS algorithm can consistently converge to steady-

state misalignment for the sparse channel.

These algorithms, however, are effective only when the

impulse response to be identified is sparse. Their perfor-

mance on non-sparse systems can be relatively poor. For the

dispersive channel, they converge even slower than conven-

tional NLMS algorithm. Benesty et al. proposed a modifica-

tion of PNLMS, the improved PNLMS (IPNLMS) algorithm

[4]. Consequently, the IPNLMS algorithm does not perform

worse than NLMS even for dispersive channels.

In this paper, we propose an algorithm to improve the per-

formance of the MPNLS algorithm for non-sparse channels,

referred to as the IMPNLMS algorithm throughout this arti-

cle. The proposed approach exploits the sparsity information

of the unknown impulse response. It adaptively detects the

channel sparsity. Therefore the parameters of the proportion-

ate algorithms are adjusted accordingly. Simulation results

show that the proposed algorithm converges as fast as the

PNLMS algorithm and the MPNLMS algorithm for sparse

channels, and for a dispersive channel it performs as well as

NLMS.

2. PROPORTIONATE ADAPTIVE ALGORITHMS

The unknown channel is assumed to be linear time-invariant

modeled by an FIR filter w0 of L coefficients. The adaptive

filter w is also an FIR filter of L coefficients. The desired

signal d(t) = y0(t) + v(t), where v(t) is background noise

or measurement noise. The input vector and the coefficient

vector of the adaptive filter at time t are denoted as

x(t) = [x(t) x(t − 1) · · · x(t − L + 1)]T ,

w(t) = [w0(t) w1(t) · · · wL−1(t)]T ,

respectively. The well-known normalized least mean square

(NLMS) algorithm is given by [5]

e(t) = d(t) − xT (t)w(t), (1)

w(t + 1) = w(t) + β
e(t)x(t)

xT (t)x(t) + δN

, (2)

where e(t) is the a prior error, β is a constant step-size pa-

rameter, and δN is a small positive regularization constant.

The proportionate adaptation algorithm can be summa-

rized as follows:

w(t + 1) = w(t) + β
e(t)K(t)x(t)

xT (t)K(t)x(t) + δP

, (3)

K(t) = diag{k0(t), k1(t), · · · , kL−1(t)}, (4)
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where δP is the regularization parameter. Comparing (3) to

(1), the difference lies in the presence of the step-size control

matrix K(t) in (3).

The original definition of the diagonal elements of matrix

K(t) in PNLMS is as follows [2]:

γl(t) = max{|wl(t)|,
ρ max{δρ, |w0(t)|, · · · , |wL−1(t)|}}, (5)

kl(t) = γl(t)/
L−1∑
l=0

|γl(t)|, (6)

The typical value of parameter δρ, used to prevent w(t) from

stalling during initialization stage, is 0.01. The parameter ρ,

typically 0.01, prevents coefficients from stalling when they

are much smaller than the largest one.

The PNLMS algorithm assigns large adaptation gain to

large coefficients, which is the reason of its fast initial con-

vergence, but too little adaptation gain to small coefficients,

which is the reason for its slow convergence after the initial

phase. By analysis of the convergence property of both large

and small coefficients, the mu-law PNLMS (MPNLMS) al-

gorithm was proposed in [3]. Instead of using magnitude di-

rectly, the logarithm of the magnitude is used as the step size.

The MPNLMS algorithm is described by replacing (5) with

γ̂l(t) = max{F (|wl(t)|),
ρ max{δρ, F (|w0(t)|), · · · , F (|wL−1(t)|)}},(7)

where

F (|wl(t)|) = ln(1 + μ|wl(t)|). (8)

Here, μ is a large positive number related to the identification

accuracy requirement, typically μ = 1000.

The proportionate algorithms were originally designed for

a sparse channel. For a non-sparse impulse response, the per-

formance of both the PNLMS algorithm and the MPNLMS

algorithm degrades greatly, even worse than NLMS. Benesty

et al. proposed a modification of PNLMS, the improved

PNLMS algorithm (IPNLMS) [4], to solve this problem.

Hence, the IPNLMS algorithm converges as fast as PNLMS

for sparse channels and its performance is not worse than

NLMS for dispersive channels. The diagonal element of the

step-size control matrix K(t) in the IPNLMS algorithm can

be described as

kl(t) =
1 − α

2L
+

(1 + α)|wl(t)|
2 ||w(t)||1 + ε

, (9)

where α(−1 ≤ α < 1) is an adjustable parameter to balance

between NLMS and PNLMS and ε is a small positive number

to avoid dividing by zero. It can be seen that IPNLMS is

equivalent to NLMS when α = −1 and for α close to 1 it

behaves like PNLMS.

3. PROPOSED APPROACH BASED ON DETECTION
OF CHANNEL SPARSITY

The MPNLMS algorithm has a consistent convergence speed

for a sparse channel comparable to the PNLMS algorithm. Its

preferred convergence performance, however, is only effec-

tive for a sparse channel. In a time-varying environment, the

channel response may vary over a relatively large range that

would be dispersive at times. The behavior of the MPNLMS

algorithm can be adjusted between proportionate adaptation

and the conventional NLMS algorithm by adjusting the pa-

rameters, δρ and ρ in (7). In the IPNLMS algorithm, one pa-

rameter, α in (9), is sufficient. These parameters are constant

during the MPNLMS and IPNLMS adaptation process. We

know that in the IPNLMS algorithm, for a sparse channel, a

value of α close to 1 is used to achieve fast convergence, and

for a dispersive channel an α close to −1 is assigned to assure

that it does not converge slower than NLMS.

We propose a new algorithm to incorporate the channel

sparsity into the MPNLMS algorithm so that its performance

for dispersive channels is improved. The new algorithm is

referred to as the improved MPNLMS (IMPNLMS) algorithm

throughout this paper.

A measurement of channel sparsity has been proposed in

[6]. For a channel w, its sparsity ξ(w) can be defined as

ξ(w) =
L

L −√
L

(
1 − ||w||1√

L||w||2

)
, (10)

where L > 1 is the length of the channel w, and ||w||1 and

||w||2 are the 1-norm and 2-norm of w, respectively. The

value of ξ(w) is between 0 and 1. For a sparse channel the

value of sparsity is close to 1 and for a dispersive channel,

this value is close to 0. Instead of calculating the sparseness

of the real channel, the sparsity of the current adaptive filter

is estimated adaptively with a forgetting factor λ.

ξw(t) =
L

L −√
L

(
1 − ||w(t)||1√

L||w(t)||2

)
, (11)

ξ(t) = (1 − λ)ξ(t − 1) + λξw(t), 0 < λ � 1. (12)

The estimation of channel sparsity is then transformed into

the parameter domain of α in the IPNLMS algorithm with

α(t) = 2ξ(t) − 1. (13)

The relationship between ξ and α was obtained through nu-

merous simulations, see Section 4 for details.

Now the diagonal elements of the step-size control matrix

K(t) for the proposed IMPNLMS algorithm is

kl(t) =
1 − α(t)

2L
+

(1 + α(t))F (|wl(t)|)
2 ||F (|w(t)|)||1 + ε

. (14)

The computational complexity of the MPNLMS algorithm is

expensive because it requires L logarithm computations in ev-

ery iteration. An approach was proposed [7], [8] to replace
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the logarithm operation in (8) with a line segment function

to approximate the μ-law function so that the computational

complexity is greatly reduced . The line segment function

in [7] and [8], however, places too much emphasis on small

coefficients and thus degrades the steady-state misalignment.

Here we propose another line segment function defined as

F̃ (|wl(t)|) =
{

400|wl(t)|, |wl(t)| < 0.005
8.51|wl(t)| + 1.96, otherwise,

(15)

The second segment linearly maps the step size of the big tap

weights in order to reflect the proportionate principle.

The estimation of channel sparsity, in (11) and (12), con-

sumes L + 5 multipliers/division and 2L + 2 additions and

1 square root. However it can be calculated in large inter-

vals varying from 10 to L to reduce the computational cost

without loss of convergence speed. So the proposed algo-

rithm does not increase computation significantly more than

the MPNLMS algorithm.

4. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm, many

simulations were conducted with four algorithms: NLMS,

IPNLMS, MPNLMS, and the proposed IMPNLMS algorithm

in the context of AEC. The common conditions for the sim-

ulations are as follows. We assume that the unknown echo

path w0 is modeled by a FIR filter with L = 300 coefficients

and that the adaptive filter w has the same number of coeffi-

cients. The disturbance v(t) is a zero-mean Gaussian signal

with a variance of 0.01. A constant step size β = 0.25 was

used for all algorithms. For IPNLMS, α = −0.5. The ini-

tial value of ξ is a large number, such as 0.96. The forget-

ting factor λ for estimation of channel sparsity is 0.1. The

results illustrated in the following figures are average of 100

times simulations. The performance of the echo path identi-

fication is quantified using the mean square deviation defined

as 10 log10 ||w0 − w(t)||22.
In order to obtain the relationship between channel spar-

sity, ξ, and α in (13) and (14), numerous simulations were

conducted with various channels. These channels with differ-

ent sparsity are synthetically generated using an exponentially

decaying window (see [9]). Fig. 1 illustrates 3 channels used

in the simulations. This kind of channels can approximately

represent most of real world transmission channel, such as the

acoustic echo path and the room transfer function. For each

channel, various α was tested and the α that converges at the

fastest speed is determined. Fig.2 illustrated our simulation

results. We can see that the good α is a linear function of the

channel sparsity, as defined in (13).

In Simulation 1, white Gaussian noise with zero-mean

and unit variance was used as the input of the simulated sys-

tem. Fig.3 compares the convergence speed of the related

algorithms with three channels shown in Fig.1 respectively. It
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Fig. 1. Three echo paths used in the simulations.
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Fig. 2. Optimal α for different channel sparsity ξ.

can be observed from the figure that the proposed IMPNLMS

algorithm converges as fast as MPNLMS for a sparse chan-

nel, as shown in Fig.3(a), and that for a dispersive channel in

Fig.1(c), the proposed IMPNLMS algorithm does not conver-

gence slower than the NLMS algorithm while the MPNLMS

algorithm relatively converges slow, as shown in Fig.3(c). In

Simulation 2, the performance of the aforementioned algo-

rithms was evaluated with the highly correlated signal as in-

put. The input signals are obtained with the model x(k) =
u(k)/(1 − 0.9z−1), where u(k) is a discrete white Gaus-

sian signal with zero-mean and unit variance. Figs.4 com-

pares their convergence speed. It can be observed that for the

colored signals the proposed IMPNLMS algorithm also con-

verges faster than MPNLMS when the impulse response is

dispersive. The tracking ability is very important for the real-

world application especially in time-varying environment. In

Simulation 3, the reconvergence performance of the proposed

algorithm was evaluated. The first channel to be identified
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is that in Fig.1(a) and then abruptly changes to the channel

in Fig.1(c) at time 5000. It can be observed from Fig.5 that

the proposed IMPNLMS algorithm behaves better than the

MPNLMS algorithm in a time-varying environment.
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Fig. 3. Simulation 1: convergence speed with white input

5. CONCLUSION

In this paper, a new algorithm is proposed to improve the
convergence speed of the MPNLMS algorithm for disper-
sive channels. The proposed algorithm adaptively detects the
channel sparsity and adjust the parameters of the MPNLMS
algorithm accordingly. Simulation results verify the effec-
tiveness of the proposed algorithm. The proposed algorithm
is preferred in a time-varying environment where the echo
path changes significantly.
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