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ABSTRACT

In this work we introduce an analytical characterization of the
frequency warping operator of arbitrary shaped non-smooth
warping maps. The transformation matrix is decomposed in
two additive terms: the first term represents its Nonuniform
Fourier Transform approximation while the second term is
imposed for aliasing suppression. The first transformation is
known to be analytically characterized and fast computable
by an interpolation approach. For the second transformation
an analytical representation is introduced which allows a fast
computation and a simple design. Finally, an example of a
potential application is shown.

Index Terms— Frequency warping, fast transforms.

1. INTRODUCTION

In the last years time–frequency transformation techniques
have acquired a leading role in signal processing. However,
such transformations have some restrictive properties which
make them not suitable in some applications. In particular, the
possibility of generalizing and adaptively varying the time–
frequency plane tiling, as shown in fig. 1, is a major demand.

In order to accomplish this task many strategies are possi-
ble, such as the application of a preliminary invertible trans-
formation (warping) to reshape the frequency axis in an in-
vertible and flexible way [1].

Frequency warping has been introduced some years
ago [2] and then modeled as a projection on a set of frequency
and amplitude modulated functions (FAM) [3]. The com-
monly adopted Laguerre transform approach to frequency
warping allows a reduced set of mapping functions and is
based on a recursive computationally expensive algorithm.
The method proposed in [4] allows a fast computation for
arbitrary maps, but it is based on numerical procedures and is
not supported by an analytical model. Here we introduce an
analytical model carrying a fast computation too.

The paper is organized as follows. In the next section we
briefly review the discrete warping operator. In section 3 we
present the analytical model for aliasing suppression. Finally,
in section 4 and 5 we provide a design example and some
conclusions.
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Fig. 1: Tiling of the time-frequency plane obtainable by the application of
frequency warping. The frequency axis is splitted in a constant-Q fashion
with Q = 2/3.

2. FREQUENCY WARPING IN BRIEF

Given a discrete-time signal, we want to introduce a deforma-
tion of the periodic frequency axis f with a proper warping
function w(f). In order to guarantee invertibility, w(f) has to
be chosen so that it maps f axis on itself, that is:

ẇ(f) > 0 a.e. ⇒ ∃w−1, w−1(w(f)) = 1 (1)

where ẇ represents the first derivative of the map w. The
warping function w(f) is defined in the interval [−1/2, 1/2]
and extended as w(f+k) = k+w(f), with k ∈ Z. Moreover,
it must be an odd function in order to guarantee that a real
signal is transformed into a real signal. The frequency warp-
ing operator can be written as the composition of an inverse
discrete Fourier transform F and a modified discrete Fourier
transform Fw:

W = F−1Fw (2)

where Fw is defined as follows:

[Fws](f) =
√

ẇ(f)
∑
n∈Z

s(n)e−j2πnw(f). (3)
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The term
√

ẇ(f) has been introduced in order to make the
operator be unitary, i.e. preserve orthogonality. By doing so,
the operator kernel is a matrix of infinite dimensions whose
elements are given by:

W(m, n) =

∫ 1

0

√
ẇ(f) ej2π(mf−nw(f))df m, n ∈ Z. (4)

An example of warping matrix is depicted in fig. 2(a). Since
frequency warping is treated as a matrix, we need to limit
the input sequence to N samples. To have invertibility, the
number of rows M must be greater than N , then warping is
not a unitary transformation, but a redundant transformation.
When M is taken equal to infinite, the warping matrix has N
orthogonal columns and represents a tight frame [5]. How-
ever, if M is properly truncated, frequency warping can still
be inverted by applying the transpose operator WT without
significant loss of accuracy:

WM,N : s �→
∑

n∈ZN

W(m, n)s(n) m ∈ ZM . (5)

where ZN and ZM are defined by:

ZN = {−N/2, . . . , N/2− 1}

ZM = {−M/2, . . . , M/2− 1}.

To preserve most of the input signal energy, we must consider:

M > 2 �N/2max ẇ�

so, we are dealing with a snug frame [5]:

W
†
M,NWM,N ∼ IN .

The implementation of (5) involves continuous operations
along the frequency axis in (3) and consequently in (4), which
are not achievable. So we introduce a sampling operation on
M discrete frequencies fk = k/M , k ∈ ZM :

Fw,M,N : s �→
√

ẇ(fk)
∑

n∈ZN

s(n)e−j2πnw(fk) (6)

so, the frequency sampled warping operator is represented by:

WM,N = F−1
M Fw,M,N (7)

where FM is the Discrete Fourier Transform of size M ×
M . The sampling operation in the Fourier domain introduces
aliasing in the warped signal domain. The effect of aliasing is
merely represented by the transformation AM,N :

WM,N =WM,N − AM,N

Through this decomposition of the warping operator we can
achieve a fast computation of frequency warping. In facts,
the operator WM,N can be opportunely factorized through
a Nonuniform Fast Fourier Transform algorithm [6] [7] [8]
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(a) Entries of a warping matrix
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(b) Absolute value of the entries of the aliasing matrix referred to (a)

Fig. 2: In (a) the common structure of a warping matrix is shown: the most
significant coefficients are enclosed between two lines whose slopes are given
by the minimum and the maximus of ẇ respectively. Entries of the aliasing
matrix (b) are very correlated, so its rank is small.

while the operator AM,N has a small rank, as can be observed
in fig. 2(b). Neglecting the aliasing term would decrease the
snugness of the frame of many orders of magnitude.

In the next section we investigate the existence of an an-
alytic representation for AM,N allowing a fast computation,
since its representation by numerical approximation has al-
ready been treated in a previous work [4].

To this aim, we must introduce appropriate classes of
function. It is worth to note that the warping map must be
considered on the entire frequency axis, so also its behavior
around the period edges must be taken into account. We as-
sume that the first σ derivative of w are continuous function:

w ∈ Cσ (8)

that is, w is not a smooth function.
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Fig. 3: Punctual error on the first column of AM,N for increasing value of
the dimension of matrix S.

3. ANALYTICAL SUPPRESSION OF ALIASING

We assumed that w is a non-smooth function (8). So, w must
have at least one discontinuity on the (σ+1)-th derivative, and
maybe other discontinuities on subsequent derivatives. The
points of discontinuity will be represented by ξi ∈ [0, 1/2]. If
these points of discontinuities stay on a discrete frequency:

Mξi ∈ N ∀i (9)

it can be proved that the aliasing matrix is given by:

ÃM,N = 2
∑

i

�[P U S V Q](ξl) (10)

where P and Q are diagonal matrix defined by:

P = diag[ej2πmξi ] m ∈ ZM (11)

Q = diag[e−j2πnw(ξi)] n ∈ ZN (12)

V is a [K ×N ] matrix whose entries are given by:

V(k, n) =
nk

(N/2)k
n ∈ ZN , k ∈ N (13)

U is a [M ×K] matrix whose entries are given by:

U(m, k) =
(−1)k−1

2k(k − 1)!
ζk−1 (m/M) m ∈ ZM , k ∈ N

(14)
where ζk represents the k-th derivative of the following:

ζ(z) = π cot(πz)−
1

z
. (15)

Finally, S is a [K×K] lower triangular matrix, whose entries
depend on the warping map w and on N and M only. If ξl
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Fig. 4: Decrease of matrix norm ε (17) for increasing value of the dimension
of matrix S. The inverse of ε is actually a measure of the frame snugness.

is a point of discontinuity of the σ + 1-th derivative, then the
first σ − 1 diagonals are null. Generally, at most three non-
zero diagonals are necessary. K should be equal to∞, but the
most significant non-zero diagonal has the following flow:

S(k + σ, k) ∝

(
k

M

)σ+1

·

(
Nẇ(ξl)

M

)k

(16)

that is, it decays exponentially, so matrix S can be properly
truncated allowing a fast computation. In fig. 3 we show the
decrease of approximation error on the first column of AM,N

(which is actually the worst case) as K increases. Moreover,
in fig. 4 we show the decrease of the matrix error norm after
the application of the adjoint operator:

ε = ‖(WM,N − ÃM,N )†(WM,N − ÃM,N )− IN‖ (17)

from the upper to the lower limit, which are obtained by ap-
plyingWM,N (neglecting AM,N ) and WM,N respectively.

We point out that in the previous formulation all the in-
formation about the warping matrix is enclosed in matrixes
S, P and Q. The last ones are actually scaling matrixes, so
the main term is S. This structure allows a fast design, since
the warping function can be easily changed by updating some
multiplicative coefficients in the matrix S.

4. EXAMPLE OF APPLICATION

Now we would like to exploit frequency warping to obtain
a constant-Q splitting of the frequency plane, corresponding
to the tiling of time-frequency plane depicted in fig. 1. In
particular, we would like to have Q, actually the ratio between
two contiguous bands, equal to 2/3. In order to do this, first
the input signal is frequency warped, then a L-band uniform
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Fig. 5: An exponential splitting (vertical axis, dotted lines) is converted in a
uniform splitting (horizontal axis), so that a uniform filter bank in the warped
domain is equivalent to a nonuniform one in the unwarped domain.

filter bank is applied. The warping function should be:

w(f) =
1

2
sign(f)aL(2|f |−1) f ∈ [−1/2, 1/2] (18)

but this function is not allowed since w(0) �= 0. So the map
has to be modified in order make it be invertible. We notice
that (18) in the neighborhood of f = 1/2 is C1, so we modify
it to become C1 over the whole frequency axis:

w(f) =

{
1
2 (c12f + c2(2f)2) f ∈ [0, 1/2L]
1
2aL(2f−1) f ∈ [1/2L, 1/2]

(19)

where a = 3/2. For the interval [−1/2, 0] we consider
w(f) = −w(−f). The coefficients c1, c2 are obtained by
imposing the continuity of w and ẇ:

c1 = L(log a− 1)a2−L (20)

c2 = −L2(log a− 1)a1−L (21)

and the resulting warping function is depicted in fig. 5 for
L = 8. This map has 3 points of discontinuities of the 2nd
derivative in f = 0, 1/L, 1/2 respectively. It can be observed
that the map has been modified so that, after the application of
a L-band filter bank, the last L−1 bands achieve a constant-Q
analysis with Q=2/3. A schematic structure of the equivalent
filter bank in the unwarped domain is depicted in fig. 6

5. CONCLUSIONS

In this work we introduced an analytical model of the fre-
quency warping operator of arbitrary shaped non-smooth
warping maps. The warping matrix has been represented
by its Nonuniform Fourier Transform approximation and
an aliasing term. An analytical representation of the alias-
ing term has been introduced, allowing a fast computation
and a simple design. Finally we have shown an example of
application.

Equivalent filter bank in the unwarped domain

f
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Fig. 6: Schematic representation of the equivalent filter bank in the unwarped
domain, normalized axis, corresponding to a L-band uniform filter bank in
the warped domain with L = 8, according to the map depicted in fig. 5.
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