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ABSTRACT

In this paper, we extend the cross-multiplicative transfer function

(CMTF) approach for improved system identification in the short-

time Fourier transform (STFT) domain. The proposed algorithm

adaptively controls the number of cross-terms in the CMTF approx-

imation to achieve the minimum mean-square error (mmse) at each

iteration. A small number of cross-terms is initially used to achieve

fast convergence, and as the adaptation process proceeds, the algo-

rithm gradually increases this number to enhance the steady-state

performance. When compared to the conventional multiplicative

transfer function (MTF) approach, the resulting algorithm achieves a

substantial improvement in steady-state performance, without com-

promising for slower convergence. Experimental results validate the

theoretical derivations and demonstrate the advantage of the pro-

posed approach to acoustic echo cancellation.

Index Terms— System identification, time-frequency analysis,

multiplicative transfer function, subband adaptive filtering.

1. INTRODUCTION

Linear systems in the short-time Fourier transform (STFT) domain

are often modeled by multiplicative transfer functions (MTFs) (e.g.,

[1–4]). The MTF approximation relies on the assumption that the

support of the STFT analysis window is sufficiently large compared

to the duration of the system impulse response. Recently, we pro-

posed a cross-MTF (CMTF) approximation for representing linear

systems in the STFT domain by introducing cross-multiplicative

terms between distinct subbands [5]. We showed that compared

to the MTF approximation, the CMTF approximation is associated

with slower convergence, but smaller steady-state mean-square er-

ror (mse). However, since this algorithm employs a fixed number

of cross-terms during the adaptation process, it may suffer from ei-

ther slow convergence in case the number of cross-terms is large, or

relatively high steady-state mse in case the number of cross-terms is

small.

In this paper, we extend the CMTF approach and propose to

adaptively control the number of cross-terms. The proposed algo-

rithm finds the optimal number of cross terms and achieves the min-

imum mse (mmse) at each iteration. At the beginning of the adapta-
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tion process, the proposed algorithm is initialized by a small number

of cross-terms to achieve fast convergence, and as the adaptation

process proceeds, it gradually increases this number to improve the

steady-state performance. This is done by simultaneously updating

three system models, each consisting of different (but consecutive)

number of cross-terms, and determining the optimal number using

an appropriate decision rule. When compared to the conventional

MTF approach, the resulting algorithm achieves a substantial im-

provement in steady-state performance, without degrading its con-

vergence rate. Experimental results validate the theoretical deriva-

tions and demonstrate the advantage of the proposed approach for

acoustic echo cancellation.

The paper is organized as follows. In Section 2, we introduce

the CMTF approximation for system identification in the STFT do-

main. In Section 3, we present an CMTF adaptation procedure using

a fixed number of cross-terms. In Section 4, we adaptively control

the number of cross-terms. Finally, in Section 5, we present experi-

mental results which verify the theoretical derivations.

2. CROSS-MTF APPROXIMATION

Let an input x(n) and output y(n) of an unknown linear time-

invariant (LTI) system be related by

y(n) = h(n) ∗ x(n) + ξ(n) � d(n) + ξ(n) , (1)

where h(n) represents the impulse response of the system, ξ(n) is

an additive noise signal, d(n) is the signal component in the system

output, and ∗ denotes convolution. Applying the STFT to y(n), we

have in the time-frequency domain

yp,k = dp,k + ξp,k , (2)

where p is the frame index and k represents the frequency-bin index

(0 ≤ k ≤ N − 1). To perfectly represent an LTI system in the

STFT domain, crossband filters between subbands are generally re-

quired [1, 6]. The widely-used MTF approximation [2] avoids these

crossband filters by assuming that the STFT analysis window is long

and smooth relative to the impulse response h(n), so that the transfer

function is approximated as multiplicative in the STFT domain:

dp,k ≈ hk xp,k , (3)
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where hk �
∑Nh−1

m=0 h(m) exp (−j2πmk/N) and Nh is the length

of h(n). In case of finite length input signals, the MTF approxima-

tion is insufficient, since a longer analysis window comes at the ex-

pense of fewer observations that become available in each frequency

bin [2].

An CMTF approximation for modeling an LTI system in the

STFT domain is obtained by including cross-multiplicative terms

between distinct subbands. Let hk,k′ denote a cross-term from fre-

quency bin k′ to frequency bin k. Then an CMTF approximation of

dp,k by 2K + 1 cross-terms around frequency bin k is given by

dp,k ≈
k+K∑

k′=k−K

hk,k′ modN xp,k′ modN . (4)

Note that for K = 0, (4) reduces to the MTF approximation (3).

3. CONVENTIONAL CMTF ADAPTATION

In this section, we present an LMS-based adaptive algorithm for es-

timating the cross-terms in each frequency bin. Let d̂p,k be an esti-

mate of dp,k with 2K + 1 cross-terms:

d̂p,k =

k+K∑
k′=k−K

xp,k′ ĥk,k′(p) , (5)

where ĥk,k′(p) is an adaptive cross-term that represents an estimate

of hk,k′ at frame index p (recall that due to periodicity of the fre-

quency bins, the summation index k′ is related to frequency bin

k′ mod N ). Let ĥk(p) = [ ĥk,k−K(p) · · · ĥk,k+K(p) ]T de-

note 2K + 1 adaptive cross-terms at the kth frequency bin, and let

xk(p) = [ xp,k−K · · · xp,k+K ]T be the input data vector cor-

responding to ĥk(p). Then (5) can be rewritten as

d̂p,k = xT
k (p)ĥk(p) . (6)

The 2K + 1 cross-terms are updated using the LMS algorithm by

ĥk(p + 1) = ĥk(p) + μep,kx
∗
k(p) (7)

where ep,k = yp,k− d̂p,k is the error signal in the kth frequency bin,

yp,k is defined in (2), and μ is a step-size. Let

εk(p) = E{|ep,k|2} (8)

denote the transient mse in the kth frequency bin. Then, assuming

that xp,k and ξp,k are uncorrelated zero-mean white Gaussian sig-

nals, the mse can be expressed recursively as [5]

εk(p + 1) = α(K) εk(p) + βk(K) , (9)

where α(K) and βk(K) depend on the step-size μ and the number

of cross-terms K. Accordingly, it can be shown [5] that the optimal

step-size that results in the fastest convergence for each K is given

by

μopt =
1

2σ2
x(K + 1)

, (10)

where σ2
x is the variance of xp,k. Equation (10) indicates that as the

number of cross-terms increases (K increases), a smaller step-size

has to be utilized. Consequently, the MTF approximation (K = 0)

is associated with faster convergence, but suffers from higher steady-

state mse εk(∞). Estimation of additional cross-terms results in a

slower convergence, but improves the steady-state mse. Since the

number of cross-terms is fixed during the adaptation process, this

algorithm may suffer from either slow convergence (typical to large

K) or relatively high steady-state mse (typical to small K). To im-

prove both the convergence rate and the steady-state mse, the num-

ber of cross-terms at each iteration should be adaptively controlled,

as discussed in the following section.

4. ADAPTIVE CONTROL OF CROSS-TERMS

In this section, we adaptively control the number of cross-terms to

achieve both faster convergence and smaller steady-state mse, com-

pared to using a fixed number of cross-terms. The strategy of con-

trolling the number of cross-terms is related to filter-length control

(e.g., [7, 8]). However, existing length-control algorithms operate in

the time domain, focusing on linear FIR adaptive filters. Here, we

extend the approach presented in [7] to construct an adaptive control

procedure for CMTF adaptation implemented in the STFT domain.

4.1. Proposed Algorithm Description

The main objective of the proposed algorithm is to find the optimal

number of cross-terms that achieves the mmse at each iteration. Let

Kopt(p) = arg min
K

εk(p) . (11)

Then, 2Kopt(p) + 1 denotes the optimal number of cross-terms at

iteration p. It was shown in the previous section that as more data

is employable in the adaptation process (i.e., the frame index p in-

creases), we expect to attain a lower mse by increasing the number

of cross-terms. Therefore, the proposed algorithm should initially

select a small number of cross-terms (usually K = 0) to achieve ini-

tial fast convergence, and then, as the adaptation process proceeds, it

should gradually increase this number to achieve the desired steady-

state performance. This is done by simultaneously updating three

system models, each consists of different number of cross-terms.

Specifically, let ĥ1k(p), ĥ2k(p) and ĥ3k(p) denote three vectors of

2K1(p) + 1, 2K2(p) + 1 and 2K3(p) + 1 adaptive cross-terms,

respectively. At the beginning of the adaptation (p = 0), the num-

ber of cross-terms in each vector is initialized to K1(0) = K0 − 1,

K2(0) = K0 and K3(0) = K0 + 1, where K0 is a constant inte-

ger. Then, these vectors are updated simultaneously at each iteration

using the normalized LMS (NLMS) algorithm

ĥik(p + 1) = ĥik(p) +
μi(p)

‖xik(p) ‖2 ei
p,kx

∗
ik(p) (12)

where i = 1, 2, 3 , xik(p) = [ xp,k−Ki(p) · · · xp,k+Ki(p) ]T ,

ei
p,k = yp,k − xT

ik(p)ĥik(p) is the resulting error signal, and μi(p)

is the relative step-size. Since the step-size should be inversely

proportional to the number of cross-terms [see (10)], we choose

μi(p) = M/ (Ki(p) + 1), with M being a constant parameter. The

second adaptive vector ĥ2k(p) is the vector of interest as its coeffi-
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cients are used for estimating the desired signal dp,k, i.e.,

d̂p,k = xT
2k(p)ĥ2k(p) . (13)

Therefore, the dimension of ĥ2k(p), 2K2(p) + 1, should represent

the optimal number of cross-terms in each iteration. For this pur-

pose, we define the following averages

εik(p) =
1

P

p∑
q=p−P+1

|ei
q,k|2 , i = 1, 2, 3 (14)

for the mse estimate at the pth iteration, where P is a constant para-

meter. These averages are computed every P frames, and the value

of K2(p) is then determined by the following decision rule:

K2 (p + 1) =

⎧⎨
⎩

K2(p) + 1 ; if ε1k(p) > ε2k(p) > ε3k(p)

K2(p) ; if ε1k(p) > ε2k(p) ≤ ε3k(p)

K2(p) − 1 ; otherwise

.

(15)

Accordingly, K1(p + 1) and K3(p + 1) are updated by

K1(p + 1) = K2 (p + 1) − 1 , (16)

K3(p + 1) = K2 (p + 1) + 1 ,

and the adaptation proceeds by updating the resized vectors ĥik(p)

using (12). Note that the parameter P should be sufficiently small

to enable tracking during variations in the optimal number of cross-

terms, and sufficiently large to achieve an efficient approximation of

the mse by (14).

The decision rule in (15) can be explained as follows. When

the optimum number of cross-terms is equal or larger than K3(p),

then ε1k(p) > ε2k(p) > ε3k(p) and all values are increased by one.

In this case, the vectors are reinitialized by ĥ1k(p + 1) = ĥ2k(p),

ĥ2k(p + 1) = ĥ3k(p), and ĥ3k(p + 1) =
[
0 ĥT

3k(p) 0
]T

. When

K2(p) is the optimum number, then ε1k(p) > ε2k(p) ≤ ε3k(p) and

the values remain unchanged. Finally, when the optimum number is

equal or smaller than K1(p), we have ε1k(p) ≤ ε2k(p) < ε3k(p)

and all values are decreased by one. In this case, we reinitialize

the vectors by ĥ3k(p + 1) = ĥ2k(p), ĥ2k(p + 1) = ĥ1k(p), and

ĥ1k(p + 1) is obtained by eliminating the first and last elements of

ĥ1k(p). The decision rule is aimed at reaching the minimal mse for

each frequency bin separately. That is, distinctive frequency bins

may have different values of K2(p) at each frame index p. Clearly,

this decision rule is unsuitable for applications where the error signal

to be minimized is in the time domain. In such cases, the optimal

number of cross-terms is the one that minimizes the time-domain

mse E{|e(n)|2} [contrary to (11)]. Therefore, we use the following

averages

εi(n) =
1

P̃

n∑
m=n−P̃+1

|ei(m)|2 , i = 1, 2, 3 (17)

for estimating the time-domain mse, where ei(n) is the inverse STFT

of ei
p,k, P̃ � (P − 1) L + N , and L is the translation factor of

the STFT. Then, as in (14), these averages are computed every P

frames (corresponding to PL time-domain iterations), and K2(n) is

determined similarly to (15) by substituting εi(n) for εik(p) and n

for p. Note that now all frequency bins have the same number of

cross-terms [2K2(p)+1] at each frame. The two proposed decision

rules, for both time and STFT domains adaptation, will be further

demonstrated in the next section.

4.2. Computational Complexity

Updating 2K + 1 cross-terms using the NLMS adaptation formula

(12), requires 8K + 6 arithmetic operations for every L input sam-

ples [5]. Therefore, since three vectors of cross-terms are updated si-

multaneously in each frame, the adaptation process of the proposed

approach requires 8 [K1(p) + K2(p) + K3(p)]+6 arithmetic oper-

ations. Using (16) and computing the desired signal estimate (6), the

overall complexity of the proposed approach is given by 28K2(p)+7

arithmetic operation for every L input samples and each frequency

bin. The computations required for updating K2(p) [see (14)-(16)]

are relatively negligible, since they are carried out only once every

P iterations. When compared to the conventional MTF approach

(K = 0), the proposed approach involves an increase of 28K2(p)+1

arithmetic operations for every L input samples and every frequency

bin.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results which verify the

theoretical analysis and demonstrate the effectiveness of the pro-

posed approach. In the first experiment, we examine the proposed

approach performance in the STFT domain for white Gaussian sig-

nals. That is, the input signal x(n) and the additive noise signal ξ(n)

are uncorrelated zero-mean white Gaussian processes with variances

σ2
x = 1 and σ2

ξ = 0.001, respectively. We model the impulse re-

sponse as a stochastic process with an exponential decay envelope,

i.e., h(n) = u(n)β(n)e−0.02n, where u(n) is the unit step function

and β(n) is a unit-variance zero-mean white Gaussian noise. The

impulse response length is set to Nh = 16, and a Hamming syn-

thesis window of length N = 128 with 50% overlap is employed.

Figure 1 shows the transient mse curves εk(p) of both the CMTF

approach with fixed number of cross-terms, and the proposed ap-

proach with variable number of cross-terms. The cross-terms in the

first approach are updated by the NLMS adaptation formula (12) us-

ing M = 0.1. For the proposed approach, we use K0 = 0, P = 30

and M = 0.1. Results are averaged out over 2000 independent runs.

The results confirm that when the number of cross-terms is fixed dur-

ing the adaptation process, a lower steady-state mse is achieved with

increasing K, but at the expense of a slower convergence. Contrar-

ily, the proposed algorithm achieves the lowest steady-state mse with

a convergence rate comparable to that of the conventional MTF ap-

proach (K = 0). In particular, a decrease of 13 dB in the mse is

obtained by the proposed approach, when compared to the MTF ap-

proach. The bottom of Fig. 1 compares K2(p), which determines

the number of cross-terms selected by the proposed algorithm at it-

eration p, to the optimal number of cross-terms Kopt(p) [see (11)].

Clearly, the number of estimated cross-terms increases as more data

is available in the adaptation process. The proposed algorithm well

predicts the optimal value Kopt(p), which enables to achieve the min-

imal mse at each iteration.
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Fig. 1. Transient mse curves for white Gaussian signals, obtained

by adaptively updating a fixed number of cross-terms (K = 0, 1, 2
and 3), and by using the proposed approach. K2(p) and Kopt(p) are

compared at the bottom.

In the second experiment, we demonstrate the proposed ap-

proach in an acoustic echo cancellation application using real speech

signals. We use an ordinary office with a reverberation time T60 of

about 100 ms. In this experiment, the signals are sampled at 16 kHz.

A far-end speech signal x(n) is generated by a loudspeaker and re-

ceived by a microphone as an echo signal d(n) together with a near-

end speech signal and local noise [collectively denoted by ξ(n)].

The distance between the near-end source and the microphone is

1 m. The effective length of the echo path is 100 ms (Nh = 1600).

The STFT is implemented with a Hamming synthesis window of

length N = 3200 and 50% overlap. The acoustic echo canceller

(AEC) performance is evaluated by the echo-return loss enhance-

ment (ERLE), defined in dB by

ERLE = 10 log10

E{y2(n)}
E{e2(n)} , (18)

where e(n) is the inverse STFT of ep,k. Figures 2(a)–(b) show the

far-end and microphone signals, respectively, where a double-talk

situation (simultaneously active far-end and near-end speakers) oc-

curs between 3.4 s and 4.4 s (indicated by two vertical dotted lines).

Figures 2(c)–(d) show the error signal e(n) obtained by the CMTF

approach with a fixed number of cross-terms (K = 0 and K = 2, re-

spectively), and Fig. 2(e) shows the error signal obtained by the pro-

posed approach. Other simulation parameters are K0 = 0, P = 5

and M = 1. In this case, the time-domain decision rule, based on

the mse estimate in (17), is employed. The ERLE values of the cor-

responding error signals were computed after convergence of the al-

gorithms, and are given by 12.8 dB (K = 0), 16.5 dB (K = 2), and

18.6 dB (proposed). Clearly, the proposed algorithm achieves both

fast convergence as the MTF approach and high ERLE as the CMTF

approach, while adaptively controlling the number of cross-terms.

6. CONCLUSIONS

We have introduced a new algorithm for system identification in the

STFT domain, which relies on the recently proposed CMTF approxi-
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Fig. 2. Speech waveforms and error signals. A double-talk situation

is indicated by vertical dotted lines. (a) Far-end signal (b) Micro-

phone signal. (c)–(d) Error signals obtained by using the CMTF

approach with fixed number of cross-terms: K = 0 and K = 2,

respectively. (e) Error signal obtained by the proposed algorithm.

mation. Instead of using a fixed number of cross-terms, the proposed

algorithm adaptively controls the number of cross-terms in each it-

eration, and enables to achieve faster convergence without compro-

mising for higher steady-state mse.
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