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ABSTRACT

In the case of multicomponent AM-FM signals, the ideal-

ized representation which consists of weighted trajectories on

the time-frequency (TF) plane, is intrinsically sparse. Recent

advances in optimal recovery from sparsity constraints thus

suggest to revisit the issue of TF localization by exploiting

sparsity, as adapted to the specific context of (quadratic) TF

distributions. Based on classical results in TF analysis, it is

argued that the relevant information is mostly concentrated in

a restricted subset of Fourier coefficients of the Wigner-Ville

distribution neighbouring the origin of the ambiguity plane.

Using this incomplete information as the primary constraint,

the desired distribution follows as the minimum �1-norm so-

lution in the transformed TF domain. Possibilities and limita-

tions of the approach are demonstrated via controlled numer-

ical experiments, its performance is assessed in various con-

figurations and the results are compared with standard tech-

niques. It is shown that improved representations can be ob-

tained, though at a computational cost which is significantly

increased.

Index Terms— time-frequency, localization, sparsity

1. TIME-FREQUENCY LOCALIZATION

1.1. AM-FM signals as time-frequency trajectories

If we consider a signal made of the superimposition of a finite

number of AM-FM components:

x(t) =
K∑

k=1

ak(t) eiϕk(t),

it is natural to attach to it an idealized TF distribution (TFD)

ρ(t, f) which essentially distributes the total energy along TF

trajectories according to:

ρ(t, f) =
K∑

k=1

a2
k(t) δ (f − ϕ̇k(t)/2π) . (1)

In such a picture, each component is characterized at each

time instant by essentially one instantaneous frequency (which,

in a first approximation, can be identified to the phase deriva-

tive), weighted by the corresponding instantaneous power.

Except for very special cases, there is no general method-

ology to automatically get a distribution as in (1). In the case

of a single component (K = 1), it is well-known [6] that a

perfect localization can be attained for pure FM signals with

a linear modulation (a1(t) = 1 and ϕ̇1(t) = f0 + α t) by

using the Wigner-Ville Distribution (WVD):

Wx(t, f) =
∫ +∞

−∞
x

(
t +

τ

2

)
x∗

(
t− τ

2

)
e−i2πfτ dτ. (2)

Although this property can be extended to some forms of

nonlinear FMs (e.g., Bertrands’ distributions for power-laws

[6]), it is generally at the expense of a substantially increased

complexity in the definition (and the computation) of the dis-

tributions, with furthermore the limitation of being adapted

to some specific type of FM only and to not extend to mul-

ticomponent situations. For this last point, the well-known

drawback of energy distributions is to obey a quadratic super-

position principle which creates cross-terms in between any

two components of a signal, and thus significantly reduces

the readability of Wigner-type distributions [6, 7].

1.2. Classical techniques of TF localization

The aforementioned difficulties have led to many develop-

ments during the last 20 years but, unfortunately, since both

localization and creation of cross-terms result from the very

same mechanism [7], it turns out that trying to impose simul-

taneously localization and cross-terms reduction is faced with

a trade-off that can be viewed as a form of time-frequency

uncertainty principle. The simplest way to understand where

this trade-off comes from and how to manage it is to interpret

the WVD in its 2D Fourier transform plane.

By definition, the WVD admits a 2D Fourier transform

which is referred to as the ambiguity function (AF) and reads

Ax(ξ, τ) =
∫ +∞

−∞
x

(
t +

τ

2

)
x∗

(
t− τ

2

)
ei2πξt dt.

If we introduce the TF shift operator Tξ,τ which acts on

signals x(t) ∈ L2(R) as

(Tξ,τx) (t) := x(t− τ) e−i2πξ(t−τ/2),
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we readily get that Ax(ξ, τ) = 〈x,Tξ,τx〉 and, by construc-

tion, the AF can thus be viewed as a TF correlation func-

tion. As such, an AF exhibits most properties of a corre-

lation function, including hermitian symmetry and the fact

that its modulus is maximum at the origin. Moreover, in

the case of multicomponent signals, the total AF consists of

both auto-components neighbouring the origin of the plane

and cross-components mostly located at a TF distance from

the origin which directly depends on the TF separation be-

tween the individual components and that are the Fourier im-

ages of the undesired cross-terms in the TF plane. This ob-

servation early prompted [5] to propose improvements upon

the WVD by weighting the AF around the origin of the plane

prior applying an inverse 2D Fourier transform: the more re-

stricted the weighting domain, the more effective the cross-

terms suppression but, at the same time, the more decreased

the TF localization. Although this procedure (which defines

Cohen’s class [6] on geometrical grounds) proved reasonably

effective, other approaches have also been proposed, which

basically exploit the phase information usually discarded in

simple quadratic distributions such as spectrograms (or scalo-

grams). In this respect, reassigned spectrograms [8] proved in

particular extremely efficient to approach (1) and will thus be

used in Section 3 for a sake of comparisons.

1.3. A sparsity perspective

If the analyzed signal is given in discrete-time and supposed

to be of dimension N in time, its TFD is of dimension N2

when computed over N frequency bins. However, assuming

that K � N , i.e., that the number of components is much

smaller than the dimension of the signal, the targeted TFD

which is supposed to satisfy (1) is distributed over the plane

in a very sparse way, with only K 1D trajectories where at

most K.N values are expected to be non-zero. Imposing such

a sparsity is therefore a new way of approaching the problem.

2. LOCALIZATION FROM SPARSITY
CONSTRAINTS

2.1. Principle

The principle of the approach is very simple. It consists in

selecting a suitable collection of AF samples neighbouring

the origin of the plane in a given domain Ω(ξ, τ) and search-

ing for the sparsest TFD ρ such that its 2D Fourier transform

F{ρ} coincides with the original AF over Ω. Looking for a

perfectly spiky solution such as (1) would require to minimize

the total number of non-zero coefficients, i.e., the �0-norm of

the TFD. While this turns out not to be practicable from a

computational viewpoint, a series of recent works [3, 4] have

shown that a near-optimal solution can be attained at a sensi-

bly more affordable cost by minimizing the �1-norm, reduc-

ing the problem to the solving of a linear program. It is this

technique which is proposed to be followed here, the desired

localized TFD ρ(t, f) being therefore the solution of the con-

strained minimization problem:

min
ρ
‖ρ‖1 ; F{ρ} −Ax = 0|(ξ,τ)∈Ω (3)

At this point, it is worth emphasizing that the specific con-

text we are interested in makes the proposed approach slightly

different from a classical recovery problem from an incom-

plete Fourier description. Indeed, the AF is by definition the

2D Fourier transform of the WVD, and there is no point in

recovering the latter from the knowledge of the AF over Ω.

The rationale is rather that Ω conveys the essential informa-

tion about local features of the constitutive components of the

signal and discards cross-terms that limit readability. The re-

sulting TFD ρ(t, f) is therefore more “constructed” by the

procedure than “reconstructed” since it defines an idealized

object which does not exist per se prior optimization.

2.2. Constraints

Exact vs. approximate — The primary constraint which is

given by (3) imposes a strict equality over Ω in the AF do-

main. This however can be relaxed [4] according to

min
ρ
‖ρ‖1 ; ‖F{ρ} −Ax‖2 ≤ ε|(ξ,τ)∈Ω , (4)

where ε is a user-specified bound. Both possibilities (3) and

(4) will be considered in the following.

Selection of Fourier samples — As far as the specification of

the domain Ω is concerned, a number of different possibilities

are also offered, in terms of both area and shape. Based on

Theorem 1.3 of [3], the cardinality of Ω should be

card(Ω) = O
(
K.N. log(N2)

)

for the recovery of K AM-FM trajectories of N points each

in a TF domain of size N2. In practice, results given in [3]

suggest that the logarithmic term can be replaced by a con-

stant in between 4 and 8. Stressing again the fact that a per-

fect recovery of the WVD is not our objective and that as

much AF values outside from the origin as possible are to

be discarded, this constant term should be preferably cho-

sen smaller. As justified in the forthcoming Section 3, it

proved reasonably efficient in the simulations we conducted

to choose card(Ω) ≈ N .

Concerning the shape of the AF domain onto which the

1/0 mask with O(N) non-zero elements is to be applied to

the AF, we chose here the simplest solution which is to make

use of a fixed square geometry. A refined procedure would

consist in selecting a domain whose geometry matches the

(data-dependent) structure of the AF near the origin (e.g., with

a Radially Gaussian Kernel [1]), but this will not be followed

up here because of space limitation.

Additional constraints — One particular interest of the ap-

proach based on optimization is that further constraints can
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Fig. 1. Synthetic example — Different TFDs are displayed in

the case of a 128 points signal whose TF model (1) is given in

the middle of the top row, in between the Wigner-Ville Distri-

bution (left) and a reassigned spectrogram (right). The bottom

row presents the results obtained from optimizations based on

the only knowledge of the 13 × 13 Fourier samples of the

WVD neighbouring the origin of the AF plane. From left to

right: minimum l2-norm, exact minimum �1-norm according

to (3) and approximate minimum �1-norm according to (4)

with ε = 0.05 ‖x‖2. For all diagrams, amplitudes are color

coded logarithmically, with a dynamic range of 18 dB.

be imposed besides (3) or (4). One can think, e.g., of the

marginalization properties attached to unit cross-sections in

the AF plane [6]. This however is not necessarily relevant

in the context of a sharp TF localization since, in the case of

multicomponent signals, highly oscillatory behaviours along

TF trajectories will be favoured. A more interesting variation

is to favor regular time evolutions, what can be achieved ex-

plicitly by imposing specific AF cross-sections or, implicitly,

by using as a starting point a time smoothed WVD.

3. EXAMPLES

The feasability of the method has been tested on simple, yet

informative examples. All the computations have been made

in MATLAB, with the TIME-FREQUENCY TOOLBOX1 for the

TF computations and the �1-MAGIC TOOLBOX2 for the opti-

mization.

Figure 1 compares different TFDs in the case of a N =
128 points signal made of the superimposition of a linear and

of a sinusoidal FM, both modulated in amplitude with a Gaus-

sian. In this example, the different optimizations have been

based on the only knowledge of the 13× 13 Fourier samples

1http://tftb.nongnu.org
2http://www.l1-magic.org

Fig. 2. Rényi entropy and �1-distance — Using the same sig-

nal as in Fig. 1, the localization properties and proximity from

the model of the different TFDs are quantified in terms of the

Rényi entropy of order 3 (left, with the model entropy in thick

black line) and �1-distance (right), as a function of the relative

number of AF samples card(Ω)/N used in the optimizations.

of the WVD neighbouring the origin of the AF plane, i.e., on

a subset of about 1% only of the total number of AF coef-

ficients. From a qualitative point of view, it turns out from

this Figure that the approximate minimum �1-norm solution

(according to (4)) is very effective, even as compared to the

reassigned spectogram which is known to usually behave best

for this kind of signal (and whose window length has been

optimized so as to best fit the model in the �1-norm sense).

This appreciation can be quantified further in terms of both

the achieved performance with respect to the actual model,

and the influence of the cardinality of the AF domain from

which the optimization is conducted. This is reported in Fig-

ure 2 which displays both a localization measure (the Rényi

entropy of order 3 [2]) and the �1-distance to the model as a

function of card(Ω)/N . What is revealed by this Figure is

that both minimum �1-norm solutions are generally better lo-

calized (i.e., have a smaller Rényi entropy) than the other con-

sidered TFDs, with even an entropy that might be smaller than

the model one whose value is in this case 6.37. In particular,

the exact �1 solution has always the minimum entropy but, as

evidenced by Fig. 1, this is due to an oversparse, discontinu-

ous, structure which results in a larger distance to the actual

model. The evolution of this distance shows that the best be-

havior is obtained with the approximate minimum �1-norm

solution, the minimum being obtained for card(Ω) ≈ N .

Additionnally, it is worth noticing that, while the WVD we

started with is known to attain negative values and whereas

no positivity constraint has been imposed, the minimum �1-

norm solutions happen to be almost positive.
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Fig. 3. Real data example — This Figure compares a reas-

signed spectrogram (left column) and the approximate min-

imum �1-norm solution (4) with ε = 0.05 ‖x‖2 (right col-

umn) in the case of a bat echolocation call of effective length

N = 400, the optimization being based on the knowledge of

the 23 × 23 Fourier samples of the WVD neighbouring the

origin of the AF plane. The bottom row displays enlarged

versions of the distributions within the yellow boxes in the

top row. For all diagrams, amplitudes are color coded loga-

rithmically, with a dynamic range of 18 dB.

As a complement to the synthetic example of Fig. 1, Fig-

ure 3 is concerned with some real data, namely the classi-

cal benchmark signal of a bat echolocation call3 of effective

length N = 400. In this case too, the approximate minimum

�1-norm solution (4) with card(Ω) = 23× 23 ≈ 1.3 N com-

pares very favorably with a reassigned spectrogram in terms

of localization, with even some smoother regularity along TF

trajectories.

Given the above reported findings, the new discussed ap-

proach is no doubt attractive in terms of ability to give sharply

localized TFDs in the case of AM-FM multicomponent sig-

nals. There is however a price to pay for this performance,

which is a quite heavy computational cost. For illustrating

this point, Table 1 reports the average computation times as-

sociated to the simulations of Fig. 2: one can see that, under

similar conditions, the �1-based TFDs differ from classical

ones by several orders of magnitude.

4. CONCLUSION AND PERSPECTIVES

A new approach has been proposed for getting sharply local-

ized TFDs in the case of multicomponent AM-FM signals by

3The authors wish to thank Curtis Condon, Ken White, and Al Feng of

the Beckman Institute of the University of Illinois for the bat data and for

permission to use it in this paper.

WV RSP �1-eq �1-err

average time (sec.) 0.16 0.30 52 175

Table 1. Computational cost— This Table reports the average

computation times associated to the simulations of Fig. 2. All

computations have been performed with MATLAB R2007a in

similar conditions (MacIntel Core2Duo 2.16 GHz).

making profit of the assumed sparsity of their energy distribu-

tion in the TF plane. Due to space limitations, only the princi-

ple of the method has been outlined and there is clearly plenty

of room for more thorough investigations and further develop-

ments. The selection of the Fourier samples in the AF domain

needs special attention in terms of both area and shape, and

it is expected that the use of adapted kernels (as proposed,

e.g., in [1]) might prove useful. Whereas the heavy computa-

tional load can be considered as a severe drawback, it is worth

stressing again that one advantage of the optimization-based

approach is that additional constraints can be envisioned so

as to satisfy specific properties in the TF plane (such as, e.g.,

regularity conditions related to smoothed marginals). Those

different points are under current investigation and will be re-

ported elsewhere.
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