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ABSTRACT

In this paper we address the problem of parametric spectral
estimation for non-stationary signals. An extension of the
recursive maximum likelihood (RML) algorithm which iter-
atively tracks the time-varying signature of the process pa-
rameters is proposed. In particular we deal with the problem
of estimating the parameters of time-varying autoregressive
(TVAR) processes. Computer simulations are conducted that
demonstrate the performance of the new method for parame-
ter estimation as well as for time-varying spectral estimation.

Index Terms— Spectral analysis, Time-frequency analy-
sis, Time-varying filters, Time series

1. INTRODUCTION

Estimating the parameters of autoregressive (AR) processes is
a fundamental issue in time series analysis [1] and signal pro-
cessing [2]. Estimates of the process parameters can be used
to form a parametric spectral estimate as well as predict future
samples of the process. Applications include radar [3], geo-
physics [4], biomedicine [5], image processing [6] and speech
signal processing [7] to name a few.
However, in all these applications one is often faced with
signals whose spectral characteristics naturally change with
time or space. In order to take non-stationarity into account,
e.g. to get an estimate of the time-varying spectrum or to
obtain an improved predictor, one has to allow for the pro-
cess parameters to vary with time. This situation is depicted
in Figure 1. The TVAR process x(n) can be described by
the output of a linear filter with time-varying transfer func-
tion H(ejω , n) = 1/A(ejω , n) driven by stationary white
Gaussian noise e(n) with E[e(n)] = 0 and autocovariance
function cee(m) = σ2

eδ(m), where δ(m) is Kronecker’s delta
function.
The polynomialA(ejω , n) is given by

A(ejω , n) = 1 +

p∑
k=1

ak(n)e−jωk

e(n)

1/A(ejω , n)

x(n)

Fig. 1. Time-varying autoregressive process

with ak(n) being the k-th AR parameter at time instance n, p
denoting the order of the autoregressive process.
Given N samples of the observed process x(n) it is our aim
to estimate the TVAR parameters ak(n) for k = 1, ..., p and
n = 0, ..., N − 1. These can be used to form the parametric
spectral estimate

ĈXX(ejω , n) =
σ̂2

e

|Â(ejω , n)|2

or to construct a predictor

x̂(n + 1) = −

p∑
k=1

âk(n)x(n − i + 1)

The remainder of the paper is organised as follows: Section
2 gives an overview of the recursive maximum likelihood
(RML) algorithm [8] including a short demonstration of its
ability to track time-varying systems. In Section 3 an ex-
tension to the RML algorithm is proposed which iteratively
tracks the time-varying signature of the process parameters.
In Section 4 simulation results are shown which demonstrate
the performance of the proposed method and section 5 pro-
vides conclusions and an outlook.

2. THE RML ALGORITHM

In this section we will shortly review the RecursiveMaximum
Likelihood (RML) algorithm which in the past has success-
fully been used for ARMA parameter estimation [9]. Given
an ARMA process of order (p, q)

x(n) = −

p∑
k=1

akx(n− k) +

q∑
k=1

bke(n− k) + e(n) (1)
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with n = 0, ..., N − 1. Let θ denote the parameter vector

θ = [a1, ..., ap, b1, ..., bq]
T

where [·]T denotes matrix transpose. Further, let φn and ψn

denote a data vector and its filtered version:

φn = [−x(n− 1), ...,−x(n− p), r(n − 1), ..., r(n− q)]T

ψn = [−x̃(n− 1), ...,−x̃(n− p), r̃(n− 1), ..., r̃(n− q)]T

with r(n) being the residual error at time instance n. With
each new data point x(n) the following set of equations will
be solved:

• Prediction error: ε(n) = x(n)− φT
n θ̂n−1

• Error covariance matrix:

Pn =
1

λ

[
Pn−1 − Pn−1ψnψT

n Pn−1

λ + ψT
n Pn−1ψn

]

• Parameter update: θ̂n = θ̂n−1 + Pnψnεn

• Residual error: r(n) = x(n) − ψT
n θ̂n

The filtered data vectors x̃(n) and r̃(n) can be obtained by
applying the filter with frequency response B̂(ejω) = 1 +∑q

k=1 b̂ke−jωk to x(n) and r(n). λ is the so called forgetting
factor, typically a constant close to unity.
When using the algorithm in recursive mode one automat-
ically obtains an estimate of the time-varying signature of
the process parameters, denoted by θ̂n, n = 0, ..., N − 1.
This is visualised in Figure 2. For this example we chose
an TVAR(1) process with N = 100 samples and a1(n) =
1.0 − 0.2 · n/N being the time-varying signature of the AR
parameter.
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Fig. 2. RML estimate of a TVAR(1) process

3. PROPOSEDMETHOD

It was shown in the previous section that the (unmodified)
RML algorithm has the ability to track time-varying model
parameters. However the large variance of the estimates is
a major drawback and may be unacceptable in many appli-
cations. Furthermore much of the data is wasted due to the
transient phase of the algorithm which is needed to lock onto
the TVAR signature. This problem becomes especially cru-
cial for small data records.
In the following, we present a new method to iteratively esti-
mate the TVAR parameters: Assume that the time variation of
the model parameters can accurately be expressed as a linear
combination of a finite number of orthonormal basis func-
tions, i.e.

ak(n) =

L∑
j=0

fj(n)αj,k, 1 ≤ k ≤ p

with {fj(n)}L

j=0 being orthonormal basis functions, e.g. Leg-
endre or Fourier. Then the expansion coefficients αj,k can be
estimated by means of a least squares regression of an ini-
tial guess θ̂n, n = 0, ..., N − 1 obtained by using the RML
algorithm as described in Section 2. This leads to a revised
estimate Θ̂0

n where the superscript 0 stands for the 0-th itera-
tion:

Θ̂0
n =

⎛
⎜⎝

â1(1) â1(2) · · · â1(N − 1)
...

. . .
...

âp(1) âp(2) · · · âp(N − 1)

⎞
⎟⎠

The revised estimate shall now be included in the next itera-
tion of the RML algorithm. For this purpose we propose the
following framework:

1. Obtain an initial estimate of the TVAR signa-
ture θ̂0

n by using the classical RML algorithm

2. Estimate a revised signature Θ̂0
n by expressing

âk(n) as a linear combination of orthonormal
basis functions

3. Form = 1, ..., M

• εn = xn − φT
n θ̂m

n−1

• Pn = 1
λ(m)

[
Pn−1−Pn−1ψnψT

n Pn−1

λ(m)+ψT
n Pn−1ψn

]

• θ̂n = (1 − c(m))θ̂m
n−1 + c(m)Θ̂m−1

n +
Pnψnεn

• rn = xn − ψT
n θ̂n

• Estimate Θ̂m
n by expressing âk(n) as a

linear combination of orthonormal basis
functions

When comparing each iteration (Step 3) of the new method
with the original RML algorithm we note the following mod-
ifications:
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• The parameter update step has been changed: When
obtaining the estimate θ̂n at time instance n we do
not rely solely on the estimate of the previous time
instance, θ̂n−1, but we also incorporate the informa-
tion of the previous iteration, namely the revised es-
timate Θ̂m−1

n . These two estimates are weighted by
(1 − c(m)) and c(m) respectively. With an increas-
ing number of iterations c(m) changes from 0 to 1, e.g.
c(m) = 1/M ·m. Thus in the first iterations by chosing
a small value for c(m) we mainly trust θ̂n−1 (initialisa-
tion phase). The more iterations we perform the more
we can trust the revised estimate Θ̂m−1

n by chosing a
larger c(m) (modification phase) until finally c(m) ap-
proaches 1 and we mainly trust Θ̂m−1

n (convergence
phase).

• When calculating the error covariance matrix Pn the
forgetting factor λ(m) is also varying from iteration to
iteration. At the beginning a relatively small forgetting
factor is prefered, such that the time-varying signature
of the parameters can roughly be tracked (at the cost of
a large variance). With an increasing number of itera-
tions the time-varying signature is already incorporated
by Θ̂m−1

n and λ can be increased towards 1 in order to
reduce the variance of the estimate.

In Figures 3(a)-(d) the estimation process of the proposed
method is shown. We again used the simple example of a
linear TVAR(1) process with a1(n) = 1.0 − 0.2 · n/N with
N = 100 samples to demonstrate the concept. The true time-
varying signature is plotted as a dotted curve. Figure 3(a)
shows the estimation result of the classical RML algorithm
which is used for initialisation. We now perform a linear re-
gression on the RML estimate which is depicted in Figure
3(b). It can be seen that the 0-th revised estimate Θ̂0

n is rather
poor as it is mainly dominated by the transient phase of the
RML algorithm. We now use Θ̂0

n as a basis for the next iter-
ation and perform again a linear regression on the (modified)
RML estimate which is depicted in Figure 3(c). Finally Fig-
ure 3(d) shows the estimated time-varying signature after 20
iterations. It can be seen that we obtain an estimate which
closely follows the true a1(n) signature and significantly im-
proves the parameter estimates from Figure 3(a) and (b).

4. SIMULATION RESULTS

In order to demonstrate the performance of the proposed
method for parameter estimation as well as for the estimation
of time-varying spectra we chose the following setup: x(n) is
modeled as an TVAR(2) process with

a1(n) = 0.8−
n

N
; a2(n) = 0.55− 1.2

(
n−N/2

N − 1

)2

σ2
e is chosen to be 1. A total of 1000Monte Carlo simulations
have been conducted with varying sample length. A polyno-
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(b) Initialisation: m = 0
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(c) First iteration: m = 1
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(d) Convergence: m = 20

Fig. 3. Estimating the TVAR signature using the proposed
method

mial order of L = 2 has been chosen and M = 20 itera-
tions of the proposed method were performed with c(m) =
(m/M)2. and λ(m) = 0.9 + 0.1 · (m/M)2 which gave good
performance. Convergence of the estimate was achieved in
all 1000Monte Carlo simulations.
The proposed method is compared to the unmodified RML
algorithm with a subsequent polynomial fitting over θ̂n. The
mean absolute deviation of the second estimated TVAR pa-
rameter, â2(n), versus the number of samples is shown in
Figure 4. Similar results are obtained for â1(n). It can clearly
be seen that the proposed method outperforms the classical
RML algorithm. Especially when a small sample size is cho-
sen the iterative procedure allows accurate tracking of the
time-varying signature and overcomes the disadvantages of
the classical RML algorithm (high variance, transient phase).
When chosing a large sample size both methods perform sim-
ilarly which is due to the fact that the transient phase of the
classical RML algorithm can be neglected and the high vari-
ance is compensated by the polynomial fit over a large set of
data points.
The effect of the proposed method on the estimate of the
time-varying spectrum is shown in Figure 5 for a sample size
of N = 256. The true spectrum of the process is shown in
Figure 5(a). The result of the classical RML algorithm shown
in Figure 5(b) is rather poor which is mainly due to the large
variance of the parameter estimates. A polynomial fitting and
a first run of the proposed method already shows a vast im-
provement which can be seen in Figure 5(c). Further runs of
the proposed method lead to convergence and a good approx-
imation of the true time-varying spectrum as shown in Figure
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Fig. 4. Mean absolute deviation of the TVAR parameter esti-
mates

5(d). Figures 5(e) and (f) display the spectrum obtained by
Grenier’s method [10] and the spectrogram for comparison.
In addition to the spectra the location of the maximum (which
in the true spectrum is at ω = 0.58π and n = 120) is shown.
It can be seen that the proposed method is able to detect the
point of maximal energy accurately whereas the spectrum ob-
tained by Grenier’s method is somewhat distorted and does
not allow for accurate detection of its maximum.

5. CONCLUSIONS

An extension to the recursive maximum likelihood algorithm
for non-stationary signals has been presented. It allows to it-
eratively track the time-varying signature of the model param-
eters and shows significantly better performance compared
to the classical RML algorithm, especially for small sample
sizes. Future work will be done in extending the proposed
method to the case of autoregressive moving-average, as well
as autoregressive plus noise processes. Further, the use of the
proposed method for the estimation of the instantaneous fre-
quency of chirp signals in noise will be studied.
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