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ABSTRACT

In this paper we propose a new method for estimating the

Ambiguity Function (AF) of a random process with limited

spreading support. The observed process is modelled as the

aggregation of a non-stationary signal of interest and noise.

As the AF has limited spreading, thresholding is a suitable

estimation procedure. Some key stochastic properties of the

Empirical Ambiguity Function are derived to obtain a suitable

threshold. Based on a median absolute deviation estimator for

the variance, we derive a suitable threshold, which forms the

basis for our proposed estimator. The estimator is tested on

both artificial and real signals, and our results demonstrate a

remarkably high resolution and reduced variance.

Index Terms— Ambiguity function, chirp signal,

Doppler-lag function, underspread process, thresholding.

1. INTRODUCTION

The Ambiguity Function (AF) is a measure of dependence be-

tween a given signal, and its translates in the time-frequency

plane. It has been studied for the characterisation of determin-

istic signals [1], and was initially introduced by Woodward

[2] for radar applications. The AF is defined in terms of lo-

cal variables, τ and ν, that do not represent global properties

of the signal, only relative dependencies. The values (ν, τ)
range over correspond to the ambiguity plane. If there is a

non-negligible contribution of the AF at a given (ν, τ) then

this indicates that at some global time t there is a dependence

with time lag τ , and likewise at some global frequency f there

is a dependence with frequency lag ν.

The AF has been established as a fundamental object in

determining whether the generating mechanism of a zero-mean

second order stochastic signal can be consistently characterised

using different second order descriptions [3, 4]. Priestley

coined the phrase ‘semi-stationary processes’, for processes

whose AFs were limited in support near ν = 0. Matz and

Hlawatsch argued that only processes with underspread AFs

(AFs concentrated near (ν, τ) = (0, 0)) were suited to time-

frequency analysis. Later developments include those of Pfan-

der and Walnut [5], who argue that non-stationary systems

can be identified without assuming a concentration around

(ν, τ) = (0, 0), as long as the spread of the AF is limited

in the ambiguity plane.

Thus estimation of the AF is in itself of considerable in-

terest. Despite this fact previous estimation methods have

been surprisingly simplistic. Standard methods calculate the

AF directly from the observed sample of the signal of inter-

est, as if the observed signal was noise free and exhibited

no variation in sample path, see [6]. Without several reali-

sations of a non-stationary process the Empirical AF (EAF)

has large variance. To reduce variability the AF is sometimes

smoothed, by either averaging the empirical auto-covariance

or by performing a windowed Fourier Transform (FT) of the

empirical auto-covariance. However both these actions cause

a loss of resolution in the ambiguity domain.

In this paper we propose to estimate the AF for signals

whose spreading in the ambiguity plane is limited. Such sig-

nals with adequate sampling in time are AF compressible.

Thus we propose to adapt thresholding methods for the es-

timation of the AF [7]. We shall demonstrate that our pro-

posed estimation procedure can greatly outperform existing

(if somewhat naive) non-parametric estimation methods.

2. THE AMBIGUITY FUNCTION

Some confusion exists in the literature when both determinis-

tic and stochastic signals are treated in the same framework.

We define the AF of a discrete-time analytic signal X[t], with

finite and summable second order structure, by [6]

AXX∗(ν, τ ] =
∞∑

t=−∞
E{X[t]X∗[t− τ ]} e−j2πνt. (1)

Here, () indicate a continuous valued argument, and [] indi-

cate a discrete valued argument.

If X[t] is a zero-mean harmonizable random process then

MXX∗ [t, τ ] = E{X[t]X∗[t − τ ]}, corresponds to the auto-

covariance of the process, where t denotes a global time vari-

able and τ is a local time shift. The AF is defined as the

discrete time FT of MXX∗ [t, τ ] with respect to t, represented

in frequency variable ν.The AF can also be expressed as an

inverse FT of a dual-frequency representation known as the

Loève spectrum [8], The auto-covariance function measures
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the dependence between the process at time t and itself at time

t−τ . The dual-frequency spectrum measures the dependence

between the process at frequency f and the frequency f − ν.

Thus the variable ν is a frequency shift or offset. The AF is

a measure of dependencies in the local time – local frequency

plane.

In this paper, we use the analytic signal in order to avoid

interference between negative and positive frequencies, and

to avoid aliasing. Note that unlike general perception an ana-

lytic non-stationary process may be non-circular [9], and we

need to consider the Complementary AF (CAF) to fully char-

acterise the second order structure of the process. We here

focus on circular analytic processes, noting that for exam-

ple real-valued stationary processes will have circular analytic

signals. In general our methods can be extended to also esti-

mate the CAF.
Since the AF is the expectation of a (potentially) random

quantity, it will in practice need to be estimated. We base the
estimation on a single finite length realisation (length N say).
Standard approaches to this estimation problem are based on
time averaging and/or frequency smoothing. We start of by
defining the EAF as the FT of the method of moments esti-
mator of the auto-covariance,

bAXY ∗(ν, τ ] =

N−1+min(0,τ)
X

t=max(0,τ)

X[t]Y ∗[t− τ ]e−j2πνt. (2)

This estimator has a large variance and should not be used

directly without modification.

3. MODELLING

To propose estimation methods we now model our observed

signal Y [t] as follows,

Y [t] = X[t] + σεε[t]. (3)

We want to estimate the AF of the signal of interest, X[t],
that has been immersed in a zero-mean analytic white noise

process, ε[t], with finite variance σ2
ε . We also assume that

the signal and the noise are independent. The EAF of Y [t] is

given by

ÂY Y ∗(ν, τ ] =ÂXX∗(ν, τ ] + ÂXε∗(ν, τ ] + ÂεX∗(ν, τ ]

+ σ2
ε Âεε∗(ν, τ ].

Thus, E{ÂY Y ∗(ν, τ ]} = AXX∗(ν, τ ] + σ2
ε Aεε∗(ν, τ ] and

var{ÂY Y ∗(ν, τ ]} = var{ÂXX∗(ν, τ ]}+ σ4
ε var{Âεε∗(ν, τ ]}

+ var{ÂXε∗(ν, τ ]}+ var{ÂXε∗(−ν,−τ ]}
as all the cross covariance terms can be shown to be zero. We

note that AXX∗(ν, τ ] is assumed to be of negligible magni-

tude apart from at a few values of (ν, τ ], and that

E
{

Âεε∗ [ν, τ ]
}

=
1
2
DN−|τ |(πν)sinc(πτ/2)

× e−jπ(ν(N+τ−1)−τ/2),

where DN (πf) = sin(πfN)/ sin(πf) and

sinc(x) = sin(x)/x. Likewise,

var
{

Âεε∗ [ν, τ ]
}

= [N − |τ |][1/2− |ν|]. (4)

For regions of the ambiguity plane where |AXX∗(ν, τ ]| is

small, the expected value of the EAF of Y [t] will be approxi-

mately zero and

E{ÂY Y ∗(ν, τ ]| {X[t]}t} ≈ 0

var{ÂY Y ∗(ν, τ ]| {X[t]}t} ≈ σ4
ε [N − τ ][1/2− ν]

+var{ÂXε∗(ν, τ ]}+ var{ÂXε∗(−ν,−τ ]}. (5)

ÂY Y ∗(ν, τ ] is conditional on {X[t]} asymptotically Gaus-

sian; this can be verified empirically and follows from the

distributional assumptions on ε[t]. We define the quantity

Â
(N)
Y Y ∗(ν, τ ] =

ÂY Y ∗(ν, τ ]√
[N − τ ][1/2− ν]

. (6)

If there is no signal present then this has variance σ4
ε . Thus,

under the assumption that only noise is present, an estimator

of σ4
ε can be obtained using the Median Absolute Deviation

(MAD) estimator on the sequence

{∣∣∣Â(N)
Y Y ∗(ν, τ ]

∣∣∣2}. MAD

has been used for estimating the scale of correlated data be-

fore, see [10]. However the estimator will need an adjustment

factor that is different for 1
2χ2

2 random variables compared to

χ2
1 random variables. We note that the median value of a 1

2χ2
2

variable is ln(2). We thus replace our estimator by

σ̂4
ε =

median
{∣∣∣Â(N)

Y Y ∗(ν, τ ]
∣∣∣2}

(ν,τ)

ln(2)
. (7)

The imprecision of this procedure will depend on the lack of

compression of X[t] in the ambiguity domain. We note that

MAD has a breakdown point of 50 %, and so with quite severe

contamination the estimator will still be useful, if somewhat

inefficient.

4. PROPOSED AF ESTIMATOR

We have proposed an estimation procedure for the AF. If no

signal is present, then the distribution of the EAF is wholly

determined by the distribution of Âεε∗(ν, τ ]. In this case from

the results of the previous section the distribution of

ÂY Y ∗(ν, τ ]/σ2
ε can be approximated as complex Gaussian

with mean E
{

Âεε∗ [ν, τ ]
}

and variance [N − |τ |][1/2− |ν|].
For many values of (ν, τ ] we can note the approximate dis-

tribution of Â
(N)
Y Y ∗(ν, τ ]/σ̂2

ε as complex Gaussian with zero

mean and a unit variance. Â
(N)
Y Y ∗(ν, τ ]/σ̂2

ε is not in general

zero. Olhede [7] derived the conservative threshold for cor-

related variables with this distribution, and independent of
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Â
(N)
Y Y ∗(ν, τ ]/σ̂2

ε , the threshold value is

λ2
N (C) = 2 log(N [log(N)]C), where C > −1 is chosen. We

propose the threshold AF estimator of

Â
(th)
Y Y ∗(ν, τ ] =

⎧⎪⎪⎨
⎪⎪⎩

ÂY Y ∗(ν, τ ] if
∣∣∣∣ bA

(N)
Y Y ∗ (ν,τ ]

bσ2
ε

∣∣∣∣
2

> λ2
2N (1)

0 if
∣∣∣∣ bA

(N)
Y Y ∗ (ν,τ ]

bσ2
ε

∣∣∣∣
2

≤ λ2
2N (1)

(8)

The usage of 2N is due to calculating the AF at both negative

and positive lags. The risk of Â
(th)
Y Y ∗(ν, τ ] is stated in [7].

5. EXAMPLES

We test our estimator on two data sets, also estimating the AF

by calculating a tapered FFT in (2).

5.1. Simulated linear chirp in noise

We generated samples of the linear chirp signal

x[t] = exp
[
jπ(2αt + βt2)

]
+ η[t], t = 0, . . . , N − 1, (9)

with N = 256, starting frequency α = 0.1 and chirp rate β =
7.8 × 10−4 immersed in additive zero-mean analytic white

noise with variance σ2 = 0.5. We calculate the EAF, which

is shown in Fig. 1(a) (all plots show the absolute value of the

function on a dB scale). The variance of the EAF is estimated

from Eq. (7), and the AF is estimated using Eq. (8). The result

of the thresholding is shown in Fig. 1(b). For comparison we

also include a smoothed estimator in Fig. 1(c). The AF of a

linear chirp should be nonzero along the line ν = βτ . We see

that the thresholding has removed most of the points outside

this line, and that the line remains intact, whilst the EAF is

extremely noisy, and the smoothed estimator has spread the

line, without removing all of the noise contributions.

5.2. Bat signal

The second example is a recorded digitized signal of the echolo-

cation of large brown bats. The sample is 400 points long,

with sampling period Δt = 7μs. It contains multiple com-

ponents, which leads to interference terms in the AF. See Fig

2(a) for a plot of the EAF, Fig 2(b) for the thresholded es-

timate and Fig 2(c) for the smoothed estimate. We are not

seeking to remove the interference, but only the effects of the

noise. The structure of the chirps, and the interaction between

the components, is much more clearly made out in Fig 2(b).

AXX∗(ν, τ ] �= 0 can be estimated as zero; this happens when

the noise is large compared to the signal contribution at (ν, τ).

6. CONCLUSION

The AF is a fundamental quantity for characterising the sec-

ond order structure of a non-stationary signal. For many sig-

nals of interest, the AF is highly compressed and only sub-

stantially distinct from non-zero in special regions of the am-

biguity plane. Using this compression we can estimate the AF

with higher resolution than smoothing approaches, by apply-

ing thresholding methods. Improved estimation performance

is shown on both synthetic and real data.
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(a) The EAF of the chirp signal.

 

 

(b) The thresholded EAF of the chirp signal.

 

 

(c) The smoothed AF of the chirp signal.

Fig. 1. Estimating the AF of the chirp signal.

 

 

(a) The EAF of the bat signal.

 

 

(b) The thresholded EAF of the bat signal.

 

 

(c) The smoothed AF of the bat signal.

Fig. 2. Estimating the AF of the bat signal.
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