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ABSTRACT

The coherence spectrum is a well-known measure of the linear statis-
tical relationship between two time series. In this paper, we extend
this concept to several processes and define the generalized mag-
nitude squared coherence (GMSC) spectrum as a function of the
largest eigenvalue of a matrix containing all the pairwise complex
coherence spectra. The GMSC is bounded between zero and one,
and attains its maximum when all the processes are perfectly corre-
lated at a given frequency. Furthermore, three different GMSC spec-
trum estimators, extending those previously proposed for the MSC
of two processes, are presented. Specifically, we compare the Welch
method, the minimum variance distortionless response (MVDR) es-
timator and a new estimator based on canonical correlation analysis
(CCA).

Index Terms— Generalized magnitude squared coherence
(GMSC) spectrum, filter-bank approach, canonical correlation anal-
ysis (CCA), minimum variance distortionless response (MVDR)
filter.

1. INTRODUCTION

The magnitude squared coherence spectrum (MSC) provides a
frequency-dependent measure of the linear relationship between two
stationary random processes, which can also be interpreted as a cor-
relation coefficient in the frequency domain [1]. For gaussian
processes it also provides a measure of the mutual information [2].
Despite its usefulness, when more than two signal are involved a
commonly accepted generalization of the MSC does not exist yet
and measuring all the pairwise MSC spectra is not practical. For in-
stance, for eight random processes there are twenty-eight different
MSC spectra.

In an attempt to fill this gap, in this paper we present a possi-
ble generalization of the MSC for several stationary processes. The
generalized MSC (GMSC) is defined as a function of the largest
eigenvalue of a matrix containing the pairwise complex coherence
spectra. Some of its properties are also described in the paper: for
instance, the GMSC is bounded between zero and one and it allows
us to quantify the contribution of each process to the overall correla-
tion. Additionally, for two processes the GMSC obviously reduces
to the conventional definition.

Finally, we present and compare three techniques for estimating
the GMSC. Two of them are straightforward extensions of the Welch
method [3], and the minimum variance distortionless response
(MVDR) approach [4] used to estimate the conventional MSC. The
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third one is based on a generalization of canonical correlation anal-
ysis (CCA) to several data sets [5], and also extends a recently pro-
posed MSC estimator [6]. Some simulation examples show that
the CCA-based estimator provides better resolution than the Welch’s
method and also avoids the signal mismatch problem associated to
the MVDR estimator.

2. DEFINITION OF THEMAGNITUDE SQUARED
COHERENCE SPECTRUM FORMULTIPLE SIGNALS

In this section we propose a generalization of the magnitude squared
coherence spectrum (MSC) forM ≥ 2 signals and discuss some of
its properties. Let us considerM zero-mean stationary complex time
series x1[n], . . . , xM [n]; and define the complex coherence spec-
trum [1] between the i-th and j-th signals as

Cxixj
(ω) =

Sxixj
(ω)√

Sxixi
(ω)Sxjxj

(ω)
, ∀i, j = 1, · · · , M,

where Sxixj
(ω) is the cross-spectrum and Sxixi

(ω) is the power
spectral density of the i-th signal. Interestingly, the complex coher-
ence spectrum can also be seen as the cross-spectrum of the pre-
whitened signals.

In the case ofM = 2 time series, theMSC is defined as γ2(ω) =
|Cx1x2

(ω)|2 [1]. In order to extend this idea to the general case of
M ≥ 2 stationary random processes we define the matrix Σx(ω) ∈
C

M×M containing all the pairwise complex coherence spectra as

Σx(ω) =

⎡
⎢⎢⎢⎣

1 Cx1x2
(ω) . . . Cx1xM

(ω)
Cx2x1

(ω) 1 . . . Cx2xM
(ω)

...
...

. . .
...

CxM x1
(ω) CxM x2

(ω) . . . 1

⎤
⎥⎥⎥⎦ ,

which can be rewritten as

Σx(ω) = D
−1/2
x (ω)Sx(ω)D−1/2

x (ω), (1)

where

Sx(ω) =

⎡
⎢⎢⎢⎣

Sx1x1
(ω) Sx1x2

(ω) . . . Sx1xM
(ω)

Sx2x1
(ω) Sx2x2

(ω) . . . Sx2xM
(ω)

...
...

. . .
...

SxM x1
(ω) SxM x2

(ω) . . . SxM xM
(ω)

⎤
⎥⎥⎥⎦ ,

and Dx(ω) is a diagonal matrix whose entries are [Dx(ω)]i,i =
Sxixi

(ω).

37691-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



Definition: The generalized magnitude squared coherence spectrum
(GMSC) is defined as γ2(ω), where

γ(ω) =
1

M − 1
(λMAX(Σx(ω)) − 1) ,

and λMAX(Σx(ω)) is the largest eigenvalue of the matrixΣx(ω).
From (1), it is easy to prove that λMAX(Σx(ω)) is also the

largest eigenvalue of the following generalized eigenvalue (GEV)
problem

Sx(ω)ṽ(ω) = λ(ω)Dx(ω)ṽ(ω), (2)

where ṽ(ω) = D
−1/2
x (ω)v(ω) is the generalized eigenvector and

v(ω) is the eigenvector ofΣx(ω). Now, we present some properties
of the GMSC.
Property 1: The GMSC spectrum is bounded between 0 and 1, i.e.,

0 ≤ γ2(ω) ≤ 1.

Proof. Taking into account that the trace ofΣx(ω) is

Tr (Σx(ω)) =
M∑

i=1

λ(i)(ω) = M,

where λ(i)(ω) ≥ 0 are the eigenvalues, it is clear that the maximum
value of λ(1)(ω) is M when λ(i)(ω) = 0, i = 2, . . . , M , whereas
its minimum value is 1 when all the eigenvalues are equal λ(i)(ω) =
1, i = 1, . . . , M . Therefore, 1 ≤ λMAX(Σx(ω)) ≤ M , which
implies 0 ≤ γ2(ω) ≤ 1.

Property 2: The GMSC spectrum is maximum when the M time
series are perfectly pairwise correlated at that frequency, and mini-
mum when all the signals are uncorrelated.

Proof. In the case of perfectly pairwise correlated signals at fre-
quency ω the matrix Σx(ω) becomes an all-ones matrix, and its
largest eigenvalue is λMAX(Σx(ω)) = M . On the other hand, in
the case of uncorrelated signals we have Σx(ω) = I and
λMAX(Σx(ω)) = 1, which concludes the proof.

Property 3: In the case of M = 2 signals, the GMSC spectrum
reduces to the standard MSC spectrum definition.

Proof. ForM = 2, it is easy to see thatΣx(ω) becomes

Σx(ω) =

[
1 Cx1x2

(ω)
C∗x1x2

(ω) 1

]
,

and its largest eigenvalue is λMAX(Σx(ω)) = 1 + |Cx1x2
(ω)|,

which yields γ2(ω) = (λMAX − 1)2 = |Cx1x2
(ω)|2.

Interestingly, the i-th coefficient vi(ω) of the eigenvector v(ω)
associated to the largest eigenvalue of Σx(ω) measures the contri-
bution of the i-th signal to the GMSC at frequency ω. For instance,
if there areM ′ (M ≥ M ′ > 1) signals perfectly pairwise correlated
at frequency ω and the remainingM −M ′ signals are uncorrelated,
then the squared modulus of the components of the eigenvector will
be |vi(ω)|2 = 1/M ′ for the perfectly correlated signals and 0 for the
uncorrelated ones. Let us consider the following example, there are
M = 3 random processes, M ′ = 2 signals are perfectly correlated
at frequency ω and the third one is uncorrelated with both. In this
example the matrixΣx(ω) is

Σx(ω) =

⎡
⎣1 1 0
1 1 0
0 0 1

⎤
⎦ ,

x1[n] h1[n, ω)
x1[n, ω)

x2[n] h2[n, ω)
x2[n, ω)

xM [n] hM [n, ω)
xM [n, ω)

...

Σ̂x(ω) γ̂2(ω)

Fig. 1. Estimation of the GMSC based on a filter-bank approach.

the GMSC at frequency ω is γ2(ω) = 1/4 and the corresponding
eigenvector is v(ω) =

[
1/

√
2 1/

√
2 0

]T .

3. ESTIMATION OF THE GMSC BASED ON A
FILTER-BANK APPROACH

In this section we propose a straightforward extension of the tech-
niques proposed in [3, 4] for the estimation of the magnitude squared
coherence spectrum forM = 2 signals. These techniques are based
on a filter-bank interpretation of the cross-spectra and the power
spectral densities.

The proposed filter-bank approach for GMSC estimation is
shown in Fig. 1. The input signals are filtered by a set ofM bandpass
filters hi[n, ω) centered at the frequency ω and the matrixΣx(ω) is
estimated from a finite number (N ) of observations of the output
signals xi[n, ω). Specifically, the filter outputs are

xi[n, ω) = xi[n] ∗ hi[n, ω) i = 1, . . . M,

and they are normalized as

x̃i[n, ω) =
xi[n, ω)√∑N−1

n=0 |xi[n, ω)|2
.

Thus, the matrixΣx(ω) can be estimated as

Σ̂x(ω) =
1

N

N−1∑
n=0

x̃[n, ω)x̃[n, ω)H ,

where x̃[n, ω) = [x̃1[n, ω), . . . , x̃M [n, ω)]T . Finally, the estimate
γ̂2(ω) of the GMSC spectrum is directly obtained from the largest
eigenvalue of Σ̂x(ω).

Regarding the bandpass filters, we present two different alterna-
tives.

• The well-known Welch’s technique [3] defines a set of band-
pass filters given by h

(Welch)
i [n, ω) = w[n]ejωn, where w[n]

is a window of size L.

• The direct application of the MVDR criterion [4] provides a
set of filters h

(MVDR)
i (ω) = R̂

−1
xixi

f(ω)/fT (ω)R̂−1
xixi

f
∗(ω),

where f(ω) = 1/
√

L[1, ejω, . . . , ejω(L−1)]T is the Fourier
vector of length L and R̂xixi

is an estimate of the correlation
matrix of xi[n].
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4. ESTIMATION OF THE GMSC SPECTRUMBASED ON
CCA

Let us start by considering the asymptotic case when L → ∞, and
writing

Sxixj
(ω) = f

H(ω)Rxixj
f(ω),

whereRxixj
is the infinite Toeplitz cross-correlation matrix between

the i-th and j-th signals, and f(ω) is the Fourier vector of infinite
length at frequency ω. With this definition, the matrices Sx(ω) and
Dx(ω) can be rewritten as

Sx(ω) = F
H(ω)

R︷ ︸︸ ︷⎡
⎢⎣

Rx1x1
. . . Rx1xM

...
. . .

...
RxM x1

. . . RxM xM

⎤
⎥⎦ F(ω), (3)

Dx(ω) = F
H(ω)

⎡
⎢⎣
Rx1x1

. . . 0

...
. . .

...
0 . . . RxM xM

⎤
⎥⎦

︸ ︷︷ ︸
D

F(ω), (4)

where

F(ω) =

⎡
⎢⎣
f(ω) . . . 0

...
. . .

...
0 . . . f(ω)

⎤
⎥⎦ .

Thus, taking into account that the matrices Rxixj
are diagonalized

by the Fourier vectors, the eigenvalue (EV) problem Σx(ω)v(ω) =
λ(ω)v(ω) can be rewritten as

D
−1/2

RD
−1/2

w(ω) = λ(ω)w(ω), (5)

wherew(ω) = F(ω)v(ω), or equivalently

w(ω) =
[
w

T
1 (ω), . . . ,wT

M (ω)
]T

,

withwk(ω) = vk(ω)f(ω).
Interestingly, the EV problem in (5) can be seen as the clas-

sical formulation of the maximum variance (MAXVAR) canonical
correlation analysis (CCA) technique [5]. Analogously to (2), the
CCA-MAXVAR problem can be rewritten as [7]

Rw̃(ω) = λ(ω)Dw̃(ω),

where w̃(ω) = D
−1/2

w(ω).
From (5) it is clear that, in the asymptotic case L → ∞, the

GMSC spectrum can be directly obtained from the eigenvalues of
D
−1/2

RD
−1/2. However, in a practical situation L is finite, and

the cross-correlation matrices are estimated from a limited num-
ber of observations, which translates into a difference between the
ideal eigenvectors w(ω) = F(ω)v(ω) and the actual ones ŵ(p) =[
ŵ

(p)T
1 , . . . , ŵ

(p)T
M

]T

of

D̂
−1/2

R̂D̂
−1/2

ŵ
(p) = λ̂(p)

ŵ
(p), (6)

where D̂ ∈ C
LM×LM and R̂ ∈ C

LM×LM are the estimated finite
size versions ofD andR.

In order to obtain an accurate GMSC estimate from the solutions
of (6), we propose a method based on a reduced-rank representation

of the matrix D̂
−1/2

R̂D̂
−1/2, which generalizes the technique pre-

sented in [6] for the estimation of the conventional MSC. Specifi-
cally, the proposed GMSC estimate is obtained as

γ̂(ω) =
1

M − 1

P∑
p=1

M∑
k=1

(λ̂(p) − 1)
∣∣∣fH(ω)ŵ

(p)
k

∣∣∣2 ,

where P is the selected rank, and λ̂(p), p = 1, . . . , P , are the P
largest eigenvalues of (6). Finally, it is easy to prove that, in the
asymptotic case where L, P, N → ∞, the proposed estimation tech-
nique yields

γ̂(ω) =
1

M − 1

∫
ω′

M∑
k=1

(
λ(ω′) − 1

) ∣∣∣fH(ω)f(ω′)vk(ω′)
∣∣∣2 dω′

=
1

M − 1

∫
ω′

(
λ(ω′) − 1

)
δ(ω − ω′)dω′ = γ(ω),

which coincides with the GMSC definition.

5. SIMULATION RESULTS

In this section we evaluate the performance of the proposed methods
for the estimation of the GMSC spectrum by means of two different
examples. In all the simulations, we have considered N = 1024
observations of M = 3 different signals. We have selected L =
100 and a Hanning window for the Welch approach. The GMSC
spectrum has been evaluated at K = 200 equispaced frequencies.
Finally, in both cases, the order of the CCA rank-reduction technique
is P = 10.

In the first example we have considered the following signals

xk[n] = wk[n] +

Nf∑
i=1

cos
(
2πν

(i)
k n + φk

)
, k = 1, . . . , 3,

where wk[n] are independent zero-mean and real Gaussian ran-
dom processes with unit variance, and the phases φk are uniform
random variables between 0 and 2π. Finally, we have considered the
set of frequencies shown in Table 1 (Nf = 5). Here, we must point
out that all frequencies except ν(3)

k coincide with frequencies of the
Fourier grid. The GMSC estimates are shown in Figs. 2.a) - 2.c),

First Example i = 1 i = 2 i = 3 i = 4 i = 5

ν
(i)
1 0.05 0.06 0.152 0.20 0.25

ν
(i)
2 0.05 0.06 0.152 0.20 0.35

ν
(i)
3 0.05 0.06 0.152 0.25 0.4

Table 1. Frequencies of the harmonic random processes of the first
example.

where we can see that the best results are obtained by the proposed
CCA-based technique, which eliminates the spurious correlations;
and by the MVDR based approach, which provides the highest spec-
tral resolution. However, the MVDR estimate is severely degraded
for the frequency ν

(3)
k ,which can be seen as the equivalent to the

well-known signal mismatch problem [6]. As expected, the max-
imum of the GMSC is at the frequencies when all the signals are
perfectly correlated.

In the final example, the three signals are generated as

xk[n] = s[n] + wk[n], k = 1, . . . , 3,
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Fig. 2. GMSC spectrum estimates. Subfigures a)-c) correspond to the first example and subfigures d)-f) correspond to the second example.
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Fig. 3. Main eigenvalues for the two examples presented.

where wk[n] are independent zero-mean and real Gaussian random
processes with unit variance, and the common signal s[n] is a nar-
rowband zero-mean real Gaussian process with unit power and pass-
band between 0.1 and 0.15. The results are shown in Figs. 2.d) - 2.f),
where we can see that the reduced-rank CCA approach provides the
most accurate estimate.

Finally, Fig. 3 shows the eigenvalues obtained in the previous
examples. In both cases the number of dominant eigenvalues is ap-
proximately P = 10, which justifies our election of the order for the
reduced-rank CCA technique. However, in a realistic scenario the
order of the reduced-rank technique must be estimated. This prob-
lem will be addressed in future work.

6. CONCLUSIONS

In this paper the magnitude squared coherence (MSC) spectrum has
been generalized to the case of multiple signals. The proposed gen-

eralization is based on the largest eigenvalue of a matrix contain-
ing all the pairwise coherence spectra and, in the case of two sig-
nals, it reduces to the classical MSC formulation. Additionally, we
have proposed a technique for the estimation of the generalized MSC
(GMSC), which can be reformulated as a generalized canonical cor-
relation analysis (CCA) problem. Unlike other well-known approach-
es, such as the Welch and minimum variance distortionless response
(MVDR), the proposed estimation technique provides a high reso-
lution and is not affected by signal mismatch problems, which has
been illustrated by means of some simulation examples.
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