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ABSTRACT

We will present an algorithm for a high resolution spectral   
estimation based on central solution of Nevanlinna-Pick 
interpolation. The approach is very well suited to short data 
records and shows superior performance, compared to 
traditional approaches, especially in detecting and resolving 
spectral lines buried in colored non-Gaussian noise.   

Index Terms— Spectral estimation, high resolution, 
parallel filtering, Nevanlinna-Pick interpolation

1. INTRODUCTION

In this paper, we investigate a rational power spectrum 
estimator initially considered in  [1]. The approach is based 
on defining a complex function f  of complex variable z ,
which its real part on the unit circle provides an estimate of 
power spectrum density. The value of this complex function 
can be obtained in some desired points in 1z  using a 
bank of filters. Then, the value of ( )f z  on the boundary 

1z  can be found through interpolation. A complex 
interpolation theory will be needed to find the proper 
interpolator. We are interested in rational interpolators to 
provide an approximate ARMA model ( )g z  for the signal. 
Standard algorithms such as Thiele’s continued fraction 
interpolating function  [2] may be used at this stage to find 
an interpolator. However, the interpolation can be improved 
by constraining f  to be analytical and to have positive real 
part in 1z . The latter is called Nevanlinna-Pick 
interpolation (NPI) problem, which has also other 
applications such as in robust control, circuit theory, etc. 
 [3]. 

A striking advantage of this approach is that it is very 
well suited to short observation record of data since it uses 
statistical estimates of only zeroth order covariance lags. 
This is as opposed to traditional spectral estimators which 
rely on high order lags where reliability of larger lags 
decrease with lag’s order. Moreover, the method provides a 
superior resolution in distinguishing close spectral lines 
buried in colored noise, which is considered as a 
challenging problem  [6]. However, a crucial matter in this 
approach is choosing interpolation points or equivalently, 

poles of the filters, which has a great impact on both the 
quality and complexity of estimation. We will discuss the 
theory behind the estimation method and propose an 
algorithm that leads to a proper selection of interpolation 
points. 

The structure of the paper is as follows. In section 2 we 
introduce a complex function and relate it to the power 
spectral density. Then we introduce the concept of bank of 
filters and discuss how covariances of their outputs provide 
estimates of the power spectrum at the reflected pole 
positions. Section 4 presents the basic elements of 
Nevanlinna-Pick interpolation. In section 5, we will discuss 
about suitable selection of interpolation points considering 
statistical variations and propose an algorithm for it. We 
will use computer simulations for distinguishing and 
resolving spectral lines embedded in a highly colored noise. 
Section 6 concludes the paper. 

2. EVALUATING FUNCTION 

Let nx  be a scalar, real-valued, zero mean, stationary 
stochastic process. The problem is to find an estimate of its 
power spectral density ( ),je , from a finite 
observation record 0 1{ , , , }Mx x x . Define 
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where kc ’s are covariance lags of input sequence kx  given 
by  

[ ]k n n kc E x x  (2) 
where [ ]E  denotes statistical expectation. 
The power spectral density of kx , is found as Discrete Time 
Fourier Transform (DTFT) of the sequence kc . Thus we can 
write
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The PSD of sequence kx  may be expressed in terms of f as
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37651-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



where [ ]  denotes real part operator. Actually the above 
relation should be interpreted as 

1
( ) 2 lim [ ( )]j j

r
e f re

whereas “spectral lines” correspond to poles of f  on the 
boundary 1z . Inversely, f  may be expressed in terms of  

 by substituting (2) into (1): 
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( )f z  is analytic in 1z  and has a positive real part there. 
The method can be used to find an ARMA model ( )g z
based on spectral factorization 1 1( ) ( ) ( ) ( )f z f z g z g z
such that 2| ( ) |jg e  provides an approximation to the true 
power spectrum ( )je .

3. ACQUIRING SAMPLE POINTS 

3.1. Evaluating  f(z) at a point 
Consider a 1st order stable linear filter with transfer function  

( ) , 1
z

G z p
z p

 (6) 

Assume that ( )x n  is the input of this filter and its stationary 
output process denotes by ( )y n . Then 

( ) ( 1) ( )y n py n x n  (7) 
The output ( )y n  can be written recursively in terms of 
( )x n as
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This is an interpolation condition for f . This means that we 
can have the value of ( )f z  at arbitrary complex points in 

1z . Note that 2[ ( ) ]E y n  is complex-valued and is 
different from traditional covariance which is defined as 
[ ( ) ( ) ]E y n y n .

Alternatively, we can use 
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3.2. Bank of filters 
We construct a parallel bank of filters as shown in Fig. 1. In 
this construction, each filter has a transfer function as

( ) 0i
i

z
G z i N

z p
  (11) 

with its complex poles in the open unit disc. The output of 
each filter provides an interpolation condition for ( )f z . As 
we will see in the next subsection the poles can not be 
arbitrarily closed to the unit circle as it would increase the 
uncertainty of estimated function. The second consideration 
is that the number of interpolation poles has direct effect on 
complexity and might not necessarily increase the quality of 
estimation. Having the value of  ( )f z  in some proper 
points, the idea is now to find the value of ( )f z  on the unit 
circle boundary by interpolation. This can be done through a 
theory described in section 4. We now briefly take into 
account the statistical variability of the estimated points.  

4. NEVANLINNA-PICK INTERPOLATION 
Given a set of  1N  distinct points outside the unit circle 

0 1{ , ,..., } 1N iz z z z

and a set of  1N  values in the right half plane  
0 1{ , ,..., } ( ) 0N iw w w w

we are seeking a function ( )f z which satisfies the 
conditions: 
1) interpolation conditions ( ) , 0,1,...,k kf z w k N
2) ( )f z   is analytic and has nonnegative real part in 1z .
3) ( )f z   is rational of degree at most N .
We use a rational interpolator of the form: 
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which provides an estimate of f(z) in (1) or (3). Requiring 
only condition 1 amounts to the standard Lagrange 

Fig. 1. The concept of bank of filters. 
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interpolation.  Requiring also condition 2 yields a classical 
problem in complex analysis called Nevanlinna-Pick 
interpolation  [4]. This problem is solvable if and only if the 
Pick matrix 

1 1
, 0

1

N

k l

k l k l

w w
P

z z
 (13) 

is positive semidefinite. Moreover, solution is unique if and 
only if P is singular [4]. Among all rational solutions to the 
NPI problem, it is desirable to bind the degree of 
interpolator to some prescribed value. In general, even if the 
NPI problem is solvable, the set of interpolants of degree 
K N  may be empty, and to determine whether this is the 
case is an open problem. But, the set of interpolants of 
degree at most N is always nonempty which prompts for 
condition 3. The problem now is called Nevanlinna-Pick 
interpolation with degree constraint (NPDC) and its solution 
is further considered in  [3] and it is shown that the solution 
can be parameterized by spectral zeros which are the zeros 
of ( )g z  or in other words, MA parameters of the model. In 
this scheme, there are two sets of design parameters to find 
an interpolator: the filterbank poles, and, the MA 
parameters or alternatively the spectral zeros of f .

The computational procedures come in two forms: For 
the default setting when the spectral zeros are chosen equal 
to the filterbank poles, a particularly simple algorithm, 
based on the so-called central solution of the classical 
interpolation theory, is available  [3]- [5]. The algorithm 
handles linear equations and is computationally efficient. 
For any other setting, a convex optimization problem needs 
to be solved. An iterative algorithm to the solution can be 
found in  [3] or more computationally efficient in  [7]. 

5. LOCATING FILTERBANK POLES 
The statistical averages in (9) or (10) are evaluated using 
sample averages and thus are with error. The variance of 
such an average is inversely proportional to the data length 
M  and distance of pole to unit circle  [1]. In general, 
choosing the filter poles too close to the unit circle increase 
the statistical variability and would not increase the quality 
of interpolation. Such strategy will also produce more 
accentuated transients which is more harmful when a short 
record of data is available and thus is not without cost, 
while the relevant trade offs must be studied. Moreover, 
choosing a large number of interpolation points may not 
lead to a more qualified estimation while unduly increasing 
the complexity of filters. Even choosing extra poles in a 
region would not yield local high resolution estimation  [8]. 
However, the poles can be placed closer to the unit circle 
when noise power is low or even where spectral lines are 
present. Based on the discussed theory, an algorithm for 
high resolution estimation can be as follows. An initial AR 

model may be obtained through available parametric 
methods such as Burg or Yule-Walker where Burg acts 
better for short data sequences. Alternatively, NPI itself can 
be used to find an initial estimate, for example by using 

0.2 0.4 0.6 0.8
1 {0, , , , , , }j j j jp r re re re re r  (14) 

The poles of the AR model by Burg or ARMA model by 
NPI can be used as interpolation points for NPI estimator. 
An initial estimate would give a pole close to the unit circle 
where a spectral line is present even though it can not 
resolve close lines. Such a pole contributes to resolving of 
lines as e.g. two peaks in the second stage of estimation, 
which in turn returns two close poles. Of course, each 
model may present extraneous peaks. These peaks may also 
be seen if we use NPI in the initial estimate due to statistical 
variability of interpolation points. However, right poles 
contribute to detecting true lines synergistically while others 
produce lines statistically that may be canceled out in the 
following stage. We may note that Burg is susceptible to 
initial phase of sinusoids. Such an effect is not seen in NPI 
and this effect of Burg in initial estimate is corrected. 

6. CASE STUDIES 

To investigate the ability of estimator, we will consider a 
case in which signal is comprised of three sinusoids 
embedded in a highly colored noise. Consider the following 
signal nx  : 

1 1 2 2 3 3

1 4 -2 -4

sin( ) sin( ) sin( )

0.7 0.3 0.5 2

n n

n n n n n n

x n n n z

z z z

where 1 2 3, ,  and n  are independent normal variables 
with zero mean and unit variance. The model has been used 
to generate several sets of 300 data points in separate runs. 
This is to investigate statistical variability of the estimates 
and the robustness of the estimation method. We have taken 
the spectral lines at normalized frequencies 1=0.30,

2=0.67 and 3=0.7. Lets preview Fig. 2(d) which shows 
the estimated PSD using pre-defined pole locations at 
1 2p p  where 

0.30 0.67 0.70
2 { , , }j j jp e e e  (15) 

with r=0.8 and =0.99 and =0.97. 1p provides a rough  
estimate of the overall spectrum and 2p  provides a good 
resolution in spectral lines and nulls. Choose of r and  is 
related to the statistical considerations  [8]. The poles in the 
second line are selected to provide more resolution where 
spectral lines are present. Of course, this needs a prior 
knowledge of line frequencies.  

Fig. 2(a) shows the estimated PSD of nx  through Burg 
algorithm of order 30. There are two peaks among others, 
one for 0.7 and 0.67 which are not resolved, and one for 

=0.3. Fig. 2(b) shows the NPI approach using the poles of 
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Burg estimate as filterbank poles to produce a 30th order 
ARMA model. The peak at 0.7 splits off and resolves two 
peaks with a superior resolution compared to traditional 
methods. 

We put another step forward and used the poles of 
obtained model to produce another model. The result is presented in Fig. 2(c) showing sharper peaks. However, the 

results might be less reliable because the poles of previous 
model showing the lines are very close to the unit circle. For 
example, the second estimated model may create poles 
exactly on the unit circle at the estimated frequencies. Also 
spurious peaks may show up if data length is too short. 
Table 1 shows the estimated frequencies pertinent to Fig. 
2(b) in three separate runs. The results show good statistical 
robustness. In Fig. 2(d) we have used the estimated 
frequency of sinusoids to find a reduced order (9th order) 
model for the signal with the poles in (14) and (15). 

7. CONCLUSION 

The concept of parallel filtering in conjunction with 
Nevanlinna-Pick interpolation provides a powerful method 
for spectral estimation and is especially suitable when a 
short record of data observation is available. A crucial point 
in this approach is the selection of filterbank poles which 
greatly impact both the quality and complexity of 
estimation. We presented an algorithm to locate the poles 
and debated why it works. Compared to traditional methods, 
the algorithm is very powerful in resolving closely spaced 
sinusoids in the presence of colored, non-Gaussian noise.  
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Fig. 2. (a) Initial estimation. (b) first and (c) second modification (d) order 
reduced estimation. 

Table 1. Estimated frequencies in three separate runs. 
(1) 0.6695    0.6988    0.3015 
(2) 0.6689    0.6999    0.3000 
(3) 0.6686    0.7002    0.3027 
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