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ABSTRACT

This work presents a novel dithering algorithm for one dimen-

sional signals. Standard dithering with a triangular probabil-

ity density white noise increases the noise level by 6dB. This

technique is numerically based instead of statistically based,

and the increase in noise level can be specified as low as

3dB. The problem is reduced to a set of non-linear simultane-

ous equations that are solved using any number of optimiza-

tion techniques. In this paper, a solution using Levenberg-

Marquardt is shown and is compared to standard dithering

with both real and synthetic signals.

Index Terms— Dither techniques, Signal quantization,

Adaptive signal processing

1. INTRODUCTION

Digital signals have become widespread and are favored in

many applications because of their noise immunity. This is a

result of their discreteness in both time and amplitude. Once

the signal has been discretized, the signal can be stored or

transmitted without additional noise being added. There are

many applications however, where the discretization in both

time and amplitude needs to be changed in the discrete do-

main. The process of lowering the amplitude resolution of a

digital signal is called re-quantization.

If the signal amplitude change is large from sample to

sample, then it is generally assumed that the re-quantization

will be a uniformly (discrete) distributed i.i.d. (independent

and identically distributed) sequence (white noise). This as-

sumption does not hold for all cases, particularly when the

signal amplitude is small compared to the quantization step.

In this case rounding or truncating a signal can introduce var-

ious undesirable artifacts, namely, additional harmonics re-

lated to the signal being re-quantized.

To avoid these unwanted harmonics, dither is generally

added to the signal being quantized. The classic dithering

of one dimensional signals consists of a white noise signal

whose purpose is to ensure that the quantization error is un-

correlated with the signal being quantized. Also, it is assumed
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that the dither signal is independent of the input. In non-

subtractive dithering this independence assumption is never

met because the quantization error signal is dependent on the

signal being quantized. However, some techniques can make

the first and second statistical moments independent of the in-

put. For instance, triangular PDF dither (TPDF ) has this

property. It has a higher noise level than some other meth-

ods, but psycho-acoustical tests show that the constant noise

level produced by having the second moment independent is

preferred by users. On the other hand, the main disadvantage

of adding dither is that since it is a noise signal, the signal to

noise ratio (SNR) of the re-quantized signal is lowered. The

work presented here has been to develop an adaptive dither

with the same properties as TPDF with higher SNR than

the classic dithering method.

This paper is organized as follows. In section 2 the theo-

retical foundation of quantization and dithering is presented.

Section 3 presents the new technique for finding signal depen-

dent dither using constrained optimizations algorithms. Sec-

tion 4 presents experiments comparing this method with clas-

sic dithering using real and synthetic data. The conclusions

and future work are presented in the last section.

2. RE-QUANTIZATION AND DITHERING

2.1. Re-quantization

This work is focused on dithering for discrete signals when

reducing the number of bits. This process of lowering the

number of bits is referred to as re-quantization. For simplicity,

this work assumes a uniform quantization and discrete signals

represented in 2s complement binary format. In this case, the

amplitude resolution of the digital signal is determined by the

number of bits used to represent each sample. The model for

the lowered resolution signal is:

Q(x[n]) = xq[n] = x[n] + ε[n],

where Q(x[n]) is the quantization operation and xq is the

lower resolution quantized signal, x the original signal, and ε
the quantization noise. The simplest method of lowering the

resolution is rounding where the number is approximated by

the nearest integer. Since the numbers are in 2s complement,
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the rounding operation is

xq[n] = 2N−M

⌊
x[n] + 1
2N−M

⌋
.

where the signal is being rounded from N to M bits, and � � is

the floor operation which rounds to the nearest lower integer.

In classic quantization model, the quantization noise is as-

sumed white, so its autocorrelation is an impulse at lag zero.

The Fourier transform of the autocorrelation is the Power Spec-

tral Density, and so has constant amplitude.

2.2. Dithering

The purpose of the dither signal is to ensure that the quanti-

zation error is uncorrelated with the signal being quantized.

Non-subtractive dither (NSD) is commonly used for one

dimensional signals. In this application dither is added, and

the signal is then re-quantized. In NSD, the input signal can

be modeled as a linear mixture model given by:

x[n] = Q(x[n] + d[n]) + ε[n] = xq[n] + ε[n], (1)

where ε is the total error. Lipshitz et. al. [1] have shown that

the total error PDF pε(ε) is always dependent of input as can

be seen in the following equation:

pε(ε) =
∫ ∞

−∞
pε|x(ε, x)px(x)dx, (2)

where px(x) is the input PDF and pε|x(ε, x) is defined by:

pε|x(ε, x) =
∞∑

k−∞
δ(ε+x−kΔ)

∫ Δ
2 +kΔ

−Δ
2 +kΔ

pd(w−x)dw. (3)

Taking the Fourier transform of Eq. 2 and using the con-

volution theorem, the CF of ε is given by:

Cε(f) =
∞∑

k=−∞
sinc

(
f − k

Δ

)
Cd

(
f − k

Δ

)
Cx

(
− k

Δ

)
, (4)

where Cε, Cx and Cd denotes the characteristic function of

the total error, the input and the dither signal respectively.

Based on this formula, Lipshitz in [2] and [3] demonstrates

that if

(
sinc

(
k

Δ

)
Cd

(
k

Δ

))(m)

= 0 ∀k �= 0,

then the mth moment is independent of the signal input. Lip-

shitz also shows that adding uniformly distributed white noise

with an amplitude of Δ to a signal uncorrelates the mean of

the total error with respect to the input signal. Thus, if one

uniform noise signal is added, the first moment of the total er-

ror is uncorrelated with the input signal. If two are added, then

the first two moments are uncorrelated with the input, and

similarly for higher order moments. As mentioned above, it

is generally accepted that the first and second moments are the

most important, so typically two independent uniform noise

signals are added. This gives the TPDF dither used for many

one dimensional signal applications.

3. ADAPTIVE DITHERING

Let the quantized signal be defined as:

xq[n] = Q

(
x[n]
2m

+ d[n]
)

2m, (5)

where m is the quantization level, x[n] is the input signal, and

d[n] the dither signal. The goal is to find a dither d[n] which

has a total error with a white spectrum and constant variance.

If x[n] is originally an integer, then let
x[n]
2m = xi[n] + xf [n]

where xi[n] represents the integer part (possibly zero) and

xf [n] the fractional part.

If the input to Q has integer parts, they are not affected by

the quantizer. This is used to re-write Eq. 5 as Eq. 6. xf [n] is

fractional and must be evaluated with the dither d[n] which is

unknown so Eq. 5 becomes:

xq[n] = (xi[n] + Q(xf [n] + d[n]))2m. (6)

In addition, the scaled total error signal is the difference

between the input signal and the quantized signal divided by

2m as shown in the following equation:

ε[n] =
x[n]− xq[n]

2m
. (7)

Replacing Eq. 6 by Eq. 7, the following expression is

obtained:

ε[n] = xf [n]−Q(xf [n] + d[n]). (8)

At this point, it is clear that the total error depends only

on the fractional part of
x[n]
2m . Hence, the integer part can be

ignored in the following sections.

The dither is obtained using the autocorrelation of the to-

tal error. The signal is segmented into frames of length N
and the total error is iteratively calculated finding the dither

d[n] which minimizes the difference between the actual and

desired autocorrelation. The solution is improved using the

circular autocorrelation estimator [4] instead of the linear au-

tocorrelation estimator. The circular autocorrelation estimator

is used to measure the linear and circular relationship between

two samples. Let the circular autocorrelation estimator at lag
L be defined as:
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fL(d) =
N−1∑
n=0

ε(〈n− L〉N )ε(n), (9)

where 〈a〉N is the modulus operation. The circular autocorre-

lation is symmetric at lag N/2, so the N equations are not lin-

early independent. This means the system is underdetermined

(i.e, less equations than variables) and it is necessary to add

additional equations in order to solve it as an overdetermined

problem. Assuming that the first frame of length N hs been

solved and the total error computed, the next frame is solved

using N/2 samples of the total error calculated and N/2 sam-

ples of the frame to be analyzed. The system with circular

autocorrelation has N samples, N/2 unknown variables, N/2
know variables and N/2 equations. Eq. 10 presents the sys-

tem of equations for the LM algorithm.

f(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εkn[0]εkn[0]+ εkn[1]εkn[1]+ . . . +εu[N − 2]εu[N − 2]

εu[N − 1]εkn[0]+ εkn[0]εkn[1]+ . . . +εu[N − 2]εu[N − 1]

εu[N − 2]εkn[0]+εu[N − 1]εkn[1]+. . . +εu[N − 3]εu[N − 1]

.

.

.
.
.
.

εu[ N
2 ]εkn[0]+ εu[ N

2 + 1]εkn[1]+. . . + εkn[ N
2 ]εu[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nσ2

0

.

.

.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where εu and εkn are the unknown and known error samples

respectively. Furthermore, the system is clearly non-linear be-

cause ε[n] depends on Q(x) which is non-linear. The system

in Eq. 10 can be solved using any number of optimization

algorithms. To linearize the system, popular optimization al-

gorithms use derivatives or a finite approximation of them. In

this case, Q(x) is not differentiable, so a smooth continuous

function is needed for the linearization. The simplest estima-

tor of Q(x) is to linearize Q̂(x) = x, so
dQ̂(x)

dx = 1. This

approximation has given good results as can be seen in sec-

tion 4. The following section presents an algorithm based on

Levenberg Marquardt that solves the optimization problem in

a constrained space.

3.1. Box Constrained Levenberg-Marquardt Algorithm

This algorithm was proposed by Kanzow et. al. in [5]. The

algorithm is called a projected Levenberg-Marquardt (PLM )

method because d is a projection onto the feasible space. This

space is a set of upper and lower bounds for the vector d.

The update rule in PLM is defined as the projection into

the desired region. The update sequence is given by:

dk+1 = PX

(
dk + α

)
, (11)

where PX is the projection operation. Similar to the uncon-

strained LM algorithm, if the error is reduced, then μ is re-

duced and a new iteration begins. Otherwise, the updated

value is defined as d = PX

(
dk − tkJT (d)

)
, where tk must

be well chosen [5] to have a decreasing error.

4. EXPERIMENTS AND RESULTS

4.1. Experiments using Synthetic Signals

The following experiment uses a 10% of full scale 1333Hz

cosine wave with 24 bit precision. This experiment seeks to

measure the difference between the total error variance ob-

tained with PLM and the desired variance. The total error

variance of the adaptive dither technique described in section

3 is compared with the variance of classical dithering tech-

niques. The input signal is dithered with adaptive dither, uni-

form PDF dither(RPDF ), triangular PDF dither (TPDF ),

and Gaussian PDF dither (GPDF ) and re-quantized to 16

bits. The desired variance of the total error for PLM has been

set to 0.150 as this is below the mean variance of the total er-

ror when dither has a RPDF (i.e, near 0.17) or a TPDF (i.e,

near 0.250). The length of the frames has been set between

1000 and 4000 samples.

Fig. 1. Total error variance for the re-quantized signal for

different frame lengths

Figure 1 shows that the absolute error between the de-

sired and sample variance for the adaptive dither is around

0.01. Both GPDF and RPDF dithers can have variances

that change depending of the input signal in contrast with

TPDF dither in which the variance is independent of the sig-

nal. In the case of the adaptive dithering, the desired variance

was very close to that specified.

The previous experiment measures the variance of the to-

tal error when re-quantizing to 16 bits. The next experiment

changes the number of bits to see if adaptive dither is effec-

tive when requantizing to various bit depths. The signal is

again quantized with adaptive dither and compared with clas-

sic techniques. The input signal has 1000 samples, the vari-

ance for adaptive dithering is set at 0.150 and the quantization

levels q are 8, 13, 16 and 19.

Figure 2 presents the variance of the total error at differ-

ent quantization levels. The results show that adaptive dither

reaches the specified variance. Furthermore, Figure 2 shows

that for RPDF and GPDF the total error variance changes

depending of the quantization level.

In solving the nonlinear equations for the adaptive dither,
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Fig. 2. Variance of the total error at different quantization

levels

the desired variance must be specified. In the next experi-

ment, this level is changed to see how well the algorithm per-

forms for variance levels between 0.11 and 0.3.

Fig. 3. Actual vs target variance of the total error for different

target levels

Figure 3 shows that the sample variance of the total error

reaches the desired variance.

4.2. Experiments using Real Signals

The purpose of the following experiment is to test adaptive

dithering using real one dimensional signals when using dif-

ferent segment lengths. The experiments used real audio sig-

nals with 24 bit precision and a 44.1 kHz sampling rate. This

experiment uses a signal with 200,000 samples segmented

into frames of length 1000, 2000, and 4000 samples. The

desired variance in the total error is set at 0.150. The original

audio file with 24 bit precision, and is re-quantized to 16 bits.

Figure 4 shows the total error variance for the different seg-

ment lengths. As seen in this figure, the desired variance is

reached. The resulting noise was analyzed as in [6] to deter-

mine if the total error is white noise. It was classified as white

noise by all the methods in that paper.

Fig. 4. Variance of the total error for different frame lengths

5. CONCLUSIONS

Adaptive dithering of one dimensional signal is a new tech-

nique which has been designed by solving a system of non-

linear equations resulting from the autocorrelation of the total

error. The derivatives of the system are approximated using

a linear function, and a Projected Levenberg-Marquards was

then used to solve the resulting non-linear system. In differ-

ent experiments changing the length of the frames and the

number of bits in the re-quantized signal the adaptive dither-

ing algorithm reaches the specified variance for the total error

within a small error margin. Finally, the experiments show

that adaptive dithering allows a total error signal with a con-

stant variance from frame to frame and has a lower total error

variance than classic dithering techniques.
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