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ABSTRACT

In this paper, we provide operational rate-distortion results for
memoryless Generalized Gaussian sources. Close approxi-
mations of the entropy are provided for these sources, after a
uniform scalar quantization at low/high resolution. Asymp-
totic expressions of the distortion for an arbitrary p-th order
error measure are also given. The resulting approximations at
low/high bitrate of the operational rate-distortion function are
thus compared with the Shannon optimal bound showing the
overall good performance of uniform quantization rules.

Index Terms— rate-distortion theory, entropy, quantiza-
tion, Gaussian distributions, asymptotic performances

1. INTRODUCTION

The Generalized Gaussian (GG) distribution (also known as
the Exponential Power distribution) provides an ubiquitous
probabilistic model for a great variety of symmetrically dis-
tributed random phenomena. In particular, it has been suc-
cessfully exploited to model sparse data such as the wavelet
coef cients of natural images [1]. It was then commonly used
in wavelet based signal/image processing tasks both for com-
pression and restoration applications. One of the main ad-
vantages of GG distributions is to offer intermediate models
between the two most popular power distributions, which are
the Gaussian and Laplace laws.
In a transform coding setting, under appropriate assump-

tions (e.g. the orthogonality of the transform), the rate-distor-
tion performance can be easily related to the individual char-
acteristics of the quantized coef cients. It appears therefore
useful to investigate the operational rate-distortion properties
of these coef cients, by adopting a GG model for the origi-
nal (unquantized) ones. However, even in the case of a uni-
form scalar quantization, no simple explicit formula for the
rate-distortion function is available. So, one must resort to
asymptotic expansions to obtain insightful expressions.
The objective of this paper is to study asymptotic rate-

distortion properties of a GG memoryless source X after a

symmetric scalar uniform quantization. In this direction, sev-
eral developments can be found in the literature. First of all,
the well-known results in [2] show the ef ciency of uniform
quantization at high bitrate. Furthermore, in [3], an approach
for designing entropy scalar constrained quantizers for ex-
ponential and Laplace distribution was proposed and com-
parisons were performed with uniform quantizers. More re-
cently in [4], the asymptotic behaviour of a uniform quantizer
with centroid reconstruction levels and an offset parameter
was characterized at low resolution for a memoryless Gaus-
sian source and a squared error distortion measure. Our work
will extend the latter results on two fronts, rst by considering
the more exible class of GG distributions and, secondly by
adopting more general distortion measures.
In Section 2, we provide close approximations of the en-

tropy of the quantized source X , from which we deduce low
and high resolution expressions. In Section 3, we study the
asymptotic behaviour of the distortion obtained with the p-th
order moment error measure. We are particularly interested
in the low resolution characteristics which allow us in Section
4 to determine the slope factors of the corresponding opera-
tional rate-distortion function. We then study the dependence
of this quantity with respect to the GG distribution exponent
and the parameter p and examine the relations existing with
the Shannon rate-distortion bound. This leads us to discuss
the cases when the scalar uniform quantization attains the op-
timal slope factor at low bitrate.

2. ENTROPY OF QUANTIZED GG SOURCES

We rst recall some basic facts about GG random variables.
The probability density function of a GG random variable is

∀ξ ∈ R, f(ξ) =
βω1/β

2Γ(1/β)
e−ω|ξ|β (1)

where β > 0 is the exponent parameter, ω > 0 is the scaling
factor and Γ is the gamma function. In the following, we will
restrict to “heavy tail” log-concave distributions within this
class by choosing β ∈ [1, 2]. We can remark that, for β =
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1, this density corresponds to the Laplace distribution and,
for β = 2, to the Gaussian one. In addition, the differential
entropy of this distribution is given in [5] by:1

hβ(ω) = −
∫ ∞

−∞
f(ξ) ln f(ξ) dξ = ln

(2Γ(1/β)
βω1/β

)
+

1
β

. (2)

Let us now de ne the quantized random variable of inter-
est, which is obtained by a uniform scalar quantization rule.
For a given quantization step size q > 0, and forX distributed
according to a GG law, the quantized random variable X is
given by:

X = r0 = 0, if |X| < q
2 , (3)

and, for all i ∈ Z such that i �= 0,

X = ri, if (|i| − 1
2 )q ≤ |X| < (|i| + 1

2 )q (4)

where the quantization levels are given by

∀i ≥ 1, ri = −r−i = (i + ζ)q (5)

with −1/2 ≤ ζ ≤ 1/2. Note that we will not consider
any saturation effect. The parameter ζ serves to adjust the
values of the quantizer reconstruction levels. The most com-
monly used quantization rule corresponds to reconstruction
levels located at the midpoints of the decision intervals, that
is ζ = 0. This rule is usually used in wavelet based image
compression techniques and constitutes the basic ingredient
of many encoding strategies.

Let us now turn our attention to the entropy of X . This
one is given by:

Hf (q) = −
∞∑

i=−∞
P(X = ri) lnP(X = ri) (6)

where q = ω1/βq is the normalized quantization step-size.
Except in the Laplace case, where β = 1, this entropy cannot
be expressed in a simple manner. However it can be writ-
ten in terms of the incomplete Gamma function, for which
asymptotic approximations are known [6]. Let us de ne the
normalized incomplete Gamma function Qa, a > 0, as fol-
lows:

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0

θa−1e−θdθ. (7)

For all i ≥ 1, let qi = (i − 1/2)q. It can be noticed that the
probability of the ri reconstruction level is expressed as

∀i ≥ 1, P(X = ri) = pi =
1
2

(
Q1/β

(
qβ

i+1

)−Q1/β

(
qβ

i

))
,

(8)
whereas the zero reconstruction level occurs with probability
P(X = r0) = p0 = Q1/β

(
qβ
1

)
. From the fact that the density

1For simplicity, the entropies will be expressed in Nats.

function f is decreasing over R+ and the positivity of the
Kullback-Leibler divergence, we then deduce the following
approximation ofHf :

Hf (q) = H
(n)
f (q) + Δn (9)

where

H
(n)
f (q) = −p0 ln p0 − 2

n−1∑
i=1

pi ln pi

+
(
hβ(1) − ln q

)(
1 − Q1/β

(
qβ

n

))
+

qn

Γ(1/β)
e−qβ

n (10)

and

0 ≤ Δn ≤ Δn =
βq

Γ(1/β)

( 2n

2n − 1

)β−1

e−qβ
n . (11)

As we can see in Fig. 1, H(2)
f provides a tight lower approxi-

mation ofHf , whereasH
(3)
f +Δ3 gives a close upper bound.
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Fig. 1. Entropy of a uniformly quantized GG source (solid line) ver-
sus normalized quantization step for β = 4/3, and its lower (almost
superimposed) and upper (dashdot line) approximations.

From (9) and using the approximations of Qa in [6],
we can derive the following asymptotic formulas for Hf (q).
When q → 0,

Hf (q) = hβ(1) − ln q + O(q). (12)

The two rst terms in the right-hand side actually correspond
to Bennett’s formula [2]. More interestingly, we have at low
resolution when q → ∞,

Hf (q) = −p0 ln p0 − (1 − p0) ln
(1 − p0

2

)
+ O(qe−(3q/2)β

)

(13)

=
qe−qβ/2β

2Γ(1/β)

(
1 + O

( ln q

qβ

))
. (14)

Eq. (14) provides a more accurate approximation than (13).
However, (13) shows that the low resolution behaviour of the
entropy is similar to that of a 3-state discrete source. The
quality of these approximations can be observed in Fig. 2.
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Fig. 2. High resolution (top) and low resolution (bottom) approx-
imations of the entropy versus q for β = 3/2. The approximation
in (12) is plotted in dashed line, those in (13) and (14) are plotted in
dashdot line and dotted line, respectively.

3. ASYMPTOTIC DISTORTION RESULTS

We now focus on the distortion expressed in terms of the p-
th order moment of the quantization error. We subsequently
de ne the normalized distortion as:

dp,ζ(q) = ωp/βE{|X − X|p} (15)

= 2ωp/β

(∫ q
2

0

ξpf(ξ)dξ +
∞∑

i=1

∫ (i+ 1
2 )q

(i− 1
2 )q

|ξ − ri|pf(ξ)dξ

)
(16)

where p is any real exponent greater than or equal to 1. Notice
that p = 2 corresponds to the mean square error criterion and
p = 1 to the mean absolute one. We will see in the next
section that considering other values of p may be of interest.
In the following, we derive asymptotic expressions of the

distortion at low and high resolution. As f is a decreasing
function over R+, and using once again approximations of
the incomplete Gamma function, we nd, for q → 0,

dp,ζ(q) =
νqp

p + 1
(
1 + O(q)

)
, (17)

where ν =
(

1
2 + ζ

)p+1

+
(

1
2 − ζ

)p+1

. When ζ = 0 and
p = 2, the classical formula for the mean square quantization
error can be recognized.
In addition, at low resolution, different approximations of

the distortion are obtained, depending on the values of p and
ζ. Three cases can be distinguished:

• if ζ �= −1/2 or p ≥ 2, then

dp,ζ(q) = μp − qp+1e−qβ/2β

2p+1Γ(1/β)q̃β(
1 − (1 + 2ζ)p +

p

βq̃β

(
1 + (1 + 2ζ)p−1

)
+ O

( 1
q2β

))
;

(18)

• if ζ = −1/2 and p = 1, then

dp,ζ(q) = μ1 − q2e−qβ/2β

4Γ(1/β)q̃β

(
1 + O

( 1
q2β

))
; (19)

• if ζ = −1/2 and 1 < p < 2, then

dp,ζ(q) = μp− qp+1e−qβ/2β

2p+1Γ(1/β)q̃β

(
1 +

p

βq̃β
+ O

( 1
qpβ

))
,

(20)

where

μp = ωp/β E[|X|p]
ε

=
Γ
(
(p + 1)/β

)
Γ(1/β)

. (21)

The proof of these results is quite technical. We refer to [7]
for more details. It can also be remarked that, for ζ = 0, the
zeroth order term in (18) vanishes, thus yielding the simpler
formula

dp,ζ(q) = μp − pqp+1e−qβ/2β

2pβΓ(1/β)q̃2β

(
1 + O

( 1
qβ

))
. (22)

In contrast, when ζ �= 0, the zeroth order term is prevalent. In
particular, when ζ > 0, we have, for all p ≥ 1, dp,ζ(q) > μp

when q is large enough. This shows that, as expected, choos-
ing ζ > 0 is a poor reconstruction strategy. An illustration of
these results is provided in Fig. 3.
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Fig. 3. Distortion (solid line) versus q and its low resolution
(dashdot line) and high resolution (dash line) approximations, when
p = β = 3/2.
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4. EFFICIENCY OF SCALAR UNIFORM
QUANTIZATION

Using the approximations of the entropy and distortion de-
rived in two previous sections, we are now able to state the
main results of this paper by calculating the operational rate-
distortion function de ned by

∀D > 0, Rp(D) = inf
ζ∈[−1/2,1/2]

Rp,ζ(D). (23)

where

∀ζ ∈ [−1/2, 1/2], Rp,ζ(D) = inf
{q>0 | dp,ζ(q)≤D}

Hf (q).

(24)
Obviously, according to (17), when D tends to zero, so does
q. Therefore, combining (17) with (12) yields, when D → 0,

Rp(D) = hβ(1)− ln 2− 1
p

ln((p + 1)D) + O(D
1/p

). (25)

In addition, for small distortion, it can be veri ed that the opti-
mum rate-distortion performance is obtained by taking ζ = 0,
that is when the reconstruction levels are the midpoints of the
decision intervals.
From low resolution results, and by invoking arguments

similar to those in [4], we can quantify the slope of the tan-
gent line to the rate-distortion curves at the extreme point cor-
responding to a zero rate and a μp distortion. We get

lim
D→(μp)−

Rp(D)
μp − D

=

⎧⎪⎨⎪⎩
∞ if p < β

1 if p = β

0 if p > β.
(26)

At this point, it is interesting to compare the above results
with the Shannon optimal bound. We recall the expression of
the Shannon rate-distortion function [8]:

Rp(D) = inf
{X̂ | E[|X−X̂|p]≤ω−p/βD}

I(X; X̂) (27)

where I(X; X̂) is the mutual information between the GG
random variable X of interest and some arbitrary real-valued
random variable X̂ de ned on the same probability space.
When D → 0, the asymptotic expression of R2 is well-
known [8]. This result can be easily extended to any order
p:

Rp(D) = hβ(1) − hp(1) − 1
p

ln(pD) + o(1). (28)

This shows that, at high bitrate, the performance loss related
to the uniform scalar quantization is limited by ln Γ(1 +
1/p) + 1

p + 1
p ln( p

1+p ) + o(1), which for p = 1 corresponds
to a maximum difference of about 0.4427 bit.
At low bitrate, we nd that for p ≥ β, the slope factor of

Rp is equal to that of Rp. Thus, in this case, uniform quan-
tization is an asymptotically optimal coding method for GG

sources. On the other hand, when p < β, the quantization
procedure is not optimal anymore. Furthermore, for p = β, it
can be proved that the optimal asymptotic performance is ob-
tained when ζ = −1/2, that is for positive quantization levels
which are equal to the lower bound of the associated decision
intervals. This emphasizes the suboptimality of midpoint re-
construction levels (i.e. ζ = 0) in spite of their frequent use
in practice. This behaviour can be compared with the result
in [4] for centroid reconstruction levels, in the Gaussian case
using a mean square error criterion. In the latter case, the
centroids of the positive decision intervals are given, when
q → ∞, by

r∗i = (i − 1/2)q
(
1 + O(q−β)

)
. (29)

So, at low bitrate, the centroids indeed converge to the lower
bounds of the decision intervals.

5. CONCLUSION

In this paper, we have derived accurate approximations of the
operational rate-distortion function of a uniformly quantized
GG source at high resolution level. However, this remains
somehow suboptimal with respect to the Shannon optimal
bound. Furthermore, at low bitrate, asymptotic formula for
both the entropy and the distortion have been given. These
have allowed us to determine the slope factor of the opera-
tional rate-distortion function. This result generalizes those
in [4] as we show that the slope factor of the rate-distortion
function Rp is the optimal one, provided that the order p of
the distortion measure is greater than or equal to the exponent
β and the positive (resp. negative) quantizer reconstruction
levels are chosen equal to the lower (resp. upper) bounds of
the decision intervals.

6. REFERENCES

[1] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet repre-
sentation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674–693, 1989.

[2] H. Gish and J. Pierce, “Asymptotically ef cient quantizing,” IEEE Trans. on Infor-
mation Theory, vol. 14, no. 5, pp. 676–683, 1968.

[3] G. Sullivan, “Ef cient scalar quantization of exponential and Laplacian random
variables,” IEEE Trans. on Information Theory, vol. 42, no. 5, pp. 1365–1374,
1996.

[4] D. Marco and D. Neuhoff, “Low-resolution scalar quantization for Gaussian
sources and squared error,” IEEE Trans. on Information Theory, vol. 52, no. 4,
pp. 1689–1697, 2006.

[5] W. Szepanski, “Δ-entropy and rate distortion bounds for generalized Gaussian
information sources and their application to image signals,” Electronics Letters,
vol. 16, no. 3, pp. 109–111, 1980.

[6] W. Gautschi, “The incomplete gamma functions since Tricomi,” in Tricomi’s
ideas and contemporary applied mathematics, Atti dei Convegni Lincei, Accademia
Nazionale dei Lincei, Roma, 1998, number 147, pp. 203–237.

[7] A. Fraysse, B. Pesquet Popescu, and J.-C. Pesquet, “On the uniform quantization
of a class of sparse sources,” submitted, 2007.

[8] T. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York,
1991.

3756


