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Abstract— This paper is concerned with signal predictive

subband quantization in oversampled filter banks. It uses

the analysis tools of robust filtering and control to obtain

a worst case power spectral analysis of the prediction error

system. The analysis removes the unrealistic assumptions on

the quantization noises in the present literature and leads

to the definition of H∞ optimal signal predictor. Based on

this analysis, an LMI optimization based method is obtained

to design the H∞ optimal signal predictor with guaranteed

inverse stability. Simulation results are presented to show

the advantages of the H∞ optimal signal predictor over the

conventional signal predictor.

Index Terms— Signal predictive quantization, H∞ opti-

mization, linear matrix inequality, inverse stability

I. INTRODUCTION

Signal prediction has proven to be an effective technique

to reduce the quantization noise in A/D converter and digital

encoder and has been studied extensively in different contexts,

see eg [1], [2], [3], [4], [5], [6] and the references therein.

Design of signal predictor is a crucial part of this technique

that affects directly the quantization noise. Most existing

design methods are based on the assumption that the power

spectra of source signal and quantization noises are known,

and solve the design problem by using the linear predictors

with finite impulse responses (FIR). These methods are useful

in the relatively ideal situations where the bit rate is high and

the spectra are known, but they are not the optimal solution for

the real situations where these assumptions are invalid. Also,

no methods can guarantee the inverse stability of the designed

predictor which is required in decoding.

This paper approaches the design problem from a systems

point of view and uses the analysis tools of robust filtering to

obtain a worst case power spectral analysis of the prediction

error system. The analysis removes the unrealistic assumptions

on the quantization noises in the present literature and leads

to the definition of H∞ optimal signal predictor. Based on

this analysis, a method is obtained to design the H∞ optimal

signal predictor with guaranteed inverse stability. Simulation

study demonstrates that the H∞optimal design outperforms

existing design methods. As a worst-case design method, it

also has better robustness against the uncertainties in signal

model.

II. SIGNAL PREDICTIVE SUBBAND QUANTIZATION

Depicted in Figure 1 is a polyphase representation of the

oversampled signal predictive subband coder. In the diagram,

E (z) ∈ C
N×M and R (z) ∈ C

M×N are the polyphase matrices

of analysis and synthesis FBs, respectively, with N being the
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Fig. 1. Oversampled Signal-Predictive subband coder

number of channels and M the decimation factor; Q is an

N -channel quantizer; IN −G (z) ∈ C
N×N is a linear strictly

causal cross-band predictor; n(k) ∈ C
M and nq(k) ∈ C

M are

the input and reconstructed signals, respectively; v(k) ∈ C
N

and vq(k) ∈ C
N are respectively the signal to be coded and

the signal decoded; v̂(k) ∈ C
N is the prediction of v(k) and

p(k) ∈ C
N is the prediction error; a(k) ∈ C

N is the quantizer

output. It is assumed that the FB is designed to satisfy the

perfect reconstruction (PR) condition R (z) E (z) = IM and

that n(k) = A(z)w(k), where A(z) ∈ C
M×M is a polyphase

matrix and w(k) ∈ C
M is a vector of white noises with power

spectral density (PSD) Sww(ejω) = IM . Note that knowing

A(z) is equivalent to knowing Snn(ejω) = A(ejω)A∗(ejω),
the PSD of n(k), which is a standard assumption in the

subband coding literature [2,3,4,5]. For detailed discussions,

the reader is referred to [5].

As in the literature [5], the quantizer Q in the encoder is

considered to be a device that injects an additive noise q(k) to

its input formed by the prediction error p(k) = v(k) − v̂(k).
Thus the encoder output can be written as

a (k) = p (k) + q(k), (1)

where q(k) ∈ C
N is p (k) dependent in the sense that the less

the dynamic range of p (k), the less the effect of q (k). With

the above quantizer model, the prediction error p (k) can be

written as

p (k) = v (k)− v̂ (k) = G (k)v (k)− [IN −G(z)]q (k) , (2)

and the encoder output a (k) can be further written as

a (k) = G (z)v (k) − [IN − G(z)]q (k) + q (k) . (3)

Assume that the linear predictor G(z) is invertible. Then the

decoder filter G−1(z) exists and produces the decoder output

vq (k) = G−1(z)a(k) = v (k) + q (k) (4)

and the reconstructed signal nq(k) = R(z)vq(k) at the output

of synthesis FB. Define the reconstruction error e(k) :=
nq(k)−n(k). Then using v(k) = E(z)n(k) and R(z)E (z) =
IM , it can be written as

e(k) = R(z)v(k) + R(z)q(k) − n(k) = R(z)q(k). (5)
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The above equation shows that for PR FB, the reconstruction

error e(k) is determined only by the quantization noise q(k)
and that reducing e(k) is equivalent to reducing q(k). Since

q(k) is dependent on the prediction error p(k), it can be

reduced by reducing the dynamic range of p(k), which can

be achieved by designing the linear predictor IN − G(z) to

minimizes the variance of p(k) [2,3,4,5].

III. ANALYSIS OF SIGNAL PREDICTIVE QUANTIZATION

Define EA(z) := E(z)A(z), u(k) := [wT (k) qT (k)]T and

T (z) := [G(z)EA(z) − (I − G(z))]. (6)

Then from (2), v(k) = E(z)n(k) and the assumption n(k) =
A(z)w(k), p(k) can be written as the output of the system

p(k) = T (z)u(k). (7)

Let Spp(ejω) and Suu(ejω) be the PSDs of p(k) and u(k),
respectively. Then the input and output PSDs are related by

Spp(ejω) = T (ejω)Suu(ejω)T ∗(ejω), the power seminorm

(the square root of variance) ‖p‖P of p(k) is given by [7]

‖p‖2
P := 1

2π

∫ 2π

0
tr[Spp(ejω)]dω = ‖Tu‖2

P , and the system

input-output gain is given by the ratio

‖p‖P
‖u‖P =

∫ 2π

0
tr

[
T (ejω)Suu(ejω)T ∗(ejω)

]
dω∫ 2π

0
tr [Suu(ejω)] dω

(8)

which is Suu(ejω) dependent. The existing predictor design

methods [2,3,4,5] all attempt to minimize this ratio based on

the following assumptions: A1. Suu(ejω) = diag[Sww(ejω)
Sqq(ejω)], ie the quantization noise and the input signal are

uncorrelated; A2. Sqq(ejω) is known and is often assumed to

be Sqq(ejω) = IN , ie the quantization noise is white; A3.

the linear predictor IN − G(z) is FIR [4,5]. There are three

major problems with these assumptions: 1) A1 is often invalid

since the quantization noise is normally correlated with the

input signal, particularly for the low resolution quantizer; 2)

A2 is practically unrealistic since Sqq(ejω) is hardly known

in practice and the quantization noise is generally not white,

resulting in Sqq(ejω) �= IN ; 3) the FIR linear predictors are

often suboptimal since the optimal solutions are generally IIR.

These problems can be avoided by using the H∞ optimal

predictor described below.

It is well known [7] that the supreme of ‖p‖P/‖u‖P
is independent of Suu(ejω) and is dependent only on the

system’s H∞ norm (induced power norm), which is given by

sup
‖u‖P<∞

‖p‖P
‖u‖P = ‖T‖∞ = sup

0≤ω≤2π
σ̄[T (ejω)]. (9)

Hence, the design of optimal linear predictor can be cast into

the following optimization problem:

min
G(z)

‖T‖2
∞. (10)

The above optimization does not impose any structural con-

straints on Suu(ejω) and does not require any knowledge

on Sqq(ejω). Thus, it deals with the colored quantization

noise and the correlation of the quantization noise and input

signal within a simple unified framework. The solution to this

optimization problem will be presented in the next section.

IV. DESIGN OF H∞ OPTIMAL PREDICTOR

Due to space limit, the proofs for the lemma and theorems

below are omitted.

For physical realizability, the predictor G(z) must be strictly

causal. To guarantee that, G(z) is constrained to be of the form

G (z) = IN − z−1K (z) . (11)

Thus, the H∞ optimal design problem in (10) becomes

min
K(z)

‖T‖2
∞. (12)

Lemma 1: Let (AG, BG, CG, DG), (AK , BK , CK , DK) and

(AEA, BEA, CEA, DEA) be the minimal state-space realiza-

tions of G(z), K (z) and EA (z) respectively. Then the min-

imal state-space realizations of the transfer functions G (z),
G (z)−1

and T (z) defined in (11) and (6) are given respec-

tively by

G (z) =
[

AG BG

CG DG

]
=

⎡
⎣ AK 0 BK

CK 0 DK

0 −I I

⎤
⎦ , (13)

G−1 (z) =

⎡
⎣ AK BK −BK

CK DK −DK

0 −I I

⎤
⎦ , (14)

T (z) =
[

AT BT

CT DT

]

=

⎡
⎢⎢⎣

AEA 0 0 BEA 0
DKCEA 0 CK DKDEA DK

BKCEA 0 AK BKDEA BK

CEA −I 0 DEA 0

⎤
⎥⎥⎦ . (15)

Theorem 1: i) The transfer function T (z) given in (15) is

stable and has an H∞ norm ‖T‖∞ < γ if and only if there

exists a matrix X such that⎡
⎢⎢⎣

−X−1 AT BT 0
AT

T −X 0 CT
T

BT
T 0 −γI DT

T

0 CT DT −γI

⎤
⎥⎥⎦ < 0, X = XT > 0. (16)

ii) The decoder filter G−1(z) is stable if and only if

ρ(Θ) < 1, (17)

where ρ(Θ) is the spectral radius of Θ and Θ is the parameter

matrix of K(z) defined as

Θ :=
[

AK BK

CK DK

]
. (18)

With Theorem 1, the design problem (12) becomes that of

finding Θ to minimize γ2 subject to (16) and (17). Because

the constraints in (16) and (17) are nonlinear, they cannot be

used directly in LMI optimization. To overcome this difficulty,

the canonical projection lemma [9] and the ‘product reduction

algorithm’ (PRA) [10] are used to convert (16) and (17) to

LMIs.

Following the line in [9], define

X−1 =
[

R U
UT ∗

]
, X =

[
S V

V T ∗
]
,
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A0 =

⎡
⎣ AEA 0 0

0 0 0
0 0 0

⎤
⎦ , B0 =

⎡
⎣ BEA 0

0 0
0 0

⎤
⎦,

F1 =

⎡
⎣ 0 0

0 I
I 0

⎤
⎦ , F2 =

[
0 0 I

CEA 0 0

]
,

F3 =
[

0 0
DEA I

]
,

ΨX =

⎡
⎢⎢⎣

−X−1 A0 B0 0
AT

0 −X 0 CT
T

BT
0 0 −γI DT

T

0 CT DT −γI

⎤
⎥⎥⎦ , (19)

M =
[ FT

1 0 0 0
]
, N =

[
0 F2 F3 0

]
,

AF =
[

AES 0
0 0

]
, BF =

[
BES 0

0 0

]
,

CF =
[

CES −I
]
, DF =

[
DES 0

]
,NR =

[
I
0

]

and Z = P−1, where R and S are square matrices with the

same dimension as that of Θ. Let NS denote any null space

of
[ [

CEA 0
] [

DEA I
] ]

. Then the theorem below

can be derived from Theorem 1.

Theorem 2: The optimal solution to (12) can be found by

the following procedure:

i) Find γ, R and S from

min
γ,R,S

γ2 (20)

subject to

[ NR 0
0 I

]T
⎡
⎣ AF RAT

F − R BF AF RCT
F

BT
F −γI DT

F

CF RAT
F DF −γI + CF RCT

F

⎤
⎦

×
[ NR 0

0 I

]
< 0, (21)

[ NS 0
0 I

]T
⎡
⎣ AT

F SAF − S AT
F SBF CT

F

BT
F SA −γI + BT

F SBF DT
F

CF DF −γI

⎤
⎦

×
[ NS 0

0 I

]
< 0, (22)

[
R I
I S

]
≥ 0. (23)

ii) Find X from solving

UV T = I − RS, (24)[
S I

V T 0

]
= X

[
I R
0 UT

]
. (25)

iii) Form ΨX according to (19) and using the X and γ
obtained above. Then search Θ using

ΨX + MT ΘN + NT ΘT M < 0. (26)

If the Θ searched satisfies (17), it is an optimal solution.

iv) If the Θ solved from (26) does not satisfy (17), then

search Θ again together with P and Z using (26) and the

LMIs below to enforce (17).[
P Θ
ΘT Z

]
> 0,

[
P I
I Z

]
≥ 0, (27)

P = PT > 0, Z = ZT > 0. (28)

Remark: iv) is a provision to guarantee the stability of G−1(z)
and it requires PRA [10] for searching P and Z. Our simula-

tion studies have shown that it is not required in most cases.

V. SIMULATION STUDY

Example 1: Consider the two-channel critically sampled

FB with the analysis filters H0(z) and H1(z) given by

[h0(0) h0(1) h0(2)h0(3)] = [0.0022−0.0320 0.0418 0.4880],
h0(i) = h0(7 − i), i = 4, 5, 6, 7, h1(i) = (−1)ih0(i), i =
0, 1, 2, · · · , 7. For this analysis FB, a PR synthesis FB is

calculated using the method given in [8]. The input signal to

the FB is the AR-6 process A (z) = 1/[(1 − 0.95z−1)(1 −
0.25z−1)(1 − 0.55z−1)(1 + 0.1z−1)(1 + 0.25z−1)(1 +
0.75z−1)].

For this example, the method given in Sect IV is used to

obtain an H∞ optimal signal predictor G(z) = IN−z−1K(z).
The obtained G (z) is a 5th order two-input-two-output IIR fil-

ter. The spectral radius of G−1 (z) is ρ(G−1(z)) = 0.9027 <
1, thus the decoder filter is stable. The obtained G(z) is

then compared with the FIR signal predictor GB(z) designed

with Bölcskei’s method [5]. Because Bölcskei’s method set

Sqq(ejω) = IN and minimizes ‖Tu‖P using an FIR GB(z),
it actually minimizes ‖T‖2, the H2 norm of T (z), with an

FIR predictor. For this particular example, the ‖T‖2 converges

to a constant when the order of GB(z) is greater than 4,

and G−1
B (z) is stable. So the 5th order GB(z) is used in

comparison.

The H2 and H∞ norms of T (z), ‖T‖2 and ‖T‖∞, resulting

from GB(z) and G(z) are computed. For GB(z), ‖T‖2 =
1.5282 and ‖T‖∞ = 1.9567. While for G(z), ‖T‖2 = 1.6566
and ‖T‖∞ = 1.5562. Clearly, because GB(z) is a truncated

H2 optimal design, it achieves smaller H2 norm of T (z) but

much larger H∞ norm. In contrast, the H∞ optimal design

G(z) achieves smaller H∞ norm by sacrificing H2 norm.

Fig 2 compares the singular value frequency responses of

T (z) resulting from GB(z) and G(z). Apparently, the largest

singular value (which is the largest system gain) of these two

designs are quite different. For GB(z), it has a high gain at low

frequency. While for G(z), it is almost completely flat over

the entire frequency range. This is because Bölcskei’s design

assumes the quantization noise is an additive white noise with

known Sqq(ejω) = IN and uncorrelated to the input signal

n (k). Minimization of the H2 norm of T (z) results in a fine

tuned gain with the low-pass characteristic. As shown below,

the high gain at low frequency is fine for the high bit-rate

when the quantization error is close to white noise. However,

it is problematic for the low bit-rate when the quantization

noise is generally not white.

To compare the performance of G(z) with that of GB(z),
the signal predictive subband coder shown in Fig 1 is simulated

with SIMULINK, using the analysis and synthesis FBs as
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Fig. 2. Singular value frequency response of T (z). Solid: H∞ optimal
design, Dashed: Bölcskei’s FIR design

given above. The above described G(z) and GB(z) are used as

the predictors to compare their respective reconstruction SNR

defined as ‖n‖2
P/‖e‖2

P .
Fig 3 compares the reconstruction SNR against the quantizer

length for G(z) = IN and GB(z), where the quantizer interval

is fixed at 0.5. Fig 4 compares the reconstruction SNR against

quantizer interval with fixed quantizer length. A 4-bit scalar

uniform quantizer is used in this comparison. As seen from the

figures, the H∞ design shows higher SNR than Bölcskei’s FIR

design in both fixed-quantizer-length and fixed-quantization-

interval situations. These results demonstrate that the design

based on the white quantization noise assumption does not

achieve the best performance at low bit-rate.

Fig. 3. Reconstruction SNR v.s quantizer length with uniform quantizer
interval=0.1. Solid: H∞optimal design, Dashed: Bölcskei’s FIR design

Fig. 4. Reconstruction SNR v.s quantization interval with 4-bit uniform
quantizer. Solid: H∞optimal design, Dash: Bölcskei’s FIR design

Example 2: This example compares the performance robust-

ness of H∞ optimal and Bölcskei’s FIR designs against the

uncertainties in signal model. For the same FB as in Example

1, G(z) and GB(z) are designed using the signal model with

the frequency response shown by the solid line curves in Fig

5. While the true signal model is that shown by the dashed line

curves in Fig 5. As seen from the figure, the low frequency

responses of these signal models are close, hence, the signal

model used in design is a reasonable estimate of the true one.

Fig 6 plots the expected SNR and the real SNR of H∞ optimal

and Bölcskei’s FIR designs. The expected SNR is obtained by

using the estimated signal model to generate the input signal

in the simulation, while the real SNR is obtained by using

the true signal model to generate the input signal. As seen

from the curves, H∞ optimal design is more robust against

the uncertainties in signal model.

Fig. 5. Frequency response of input signal models. Top/Bottom: Magnitude/
Phase of singular values. Solid: Model for design, Dash: Model for Simulation

Fig. 6. Reconstruction SNR v.s. quantizer length with quantization inter-
val=0.05. Solid: Expected SNR for H∞design, Solid + circle : Real SNR
for H∞design. Dashed: Expected SNR for Bölcskei’s FIR design. Dashed +
circle: Real SNR for Bölcskei’s FIR design.

VI. CONCLUSION

A new H∞ optimal design method is presented to obtain

the signal predictor that minimizes the variance of quantizer

input. The new method is based on LMI optimization, and

solves two major problems in the existing methods. Firstly,

it removes the unrealistic assumptions on quantization noise

in the existing methods. Secondly, it guarantees the inverse

stability of designed predictor. Simulation results confirms the

assumptions used to derive the new design and demonstrate

the superior performance of the new method, especially its

robustness against the uncertainties in signal model.
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