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ABSTRACT
This paper presents a modulation-based reconstruction method

for audio signals across long gaps of missing samples. We

use LTI filterbanks followed by a multiplicative model that

decomposes subbands into constituent modulators and car-

riers. This processing separates slowly-varying envelopes,

or modulators, from the high-frequency fine structure of

the carriers. Since modulators can be downsampled, this

decomposition allows faster gap reconstruction when apply-

ing standard interpolation algorithms on the downsampled

modulators, particularly when interpolation requires matrix

inversion.

Index Terms— modulation, signal reconstruction, acous-

tic signal processing, music, speech processing

1. INTRODUCTION

Gap interpolation is the process of reconstructing a contigu-

ous segment of missing information in a digital signal. Such

a need arises when, for example, an audio signal contains

impulsive noise, or when a transmitted signal loses packets

due to channel effects. Long gaps are difficult to repair in

nonstationary audio signals, especially when the gap length

is on the order of, or greater than, the interval of stationarity

of the signal. The goal of this paper is to study the effects

of using narrowband modulation decompositions as a pre-

processor stage for the interpolation of gaps ranging from 10

ms to 500 ms.

Previous work in gap interpolation has included opti-

mal least-squares solutions based on autoregressive modeling

[1, 2]. These methods can give satisfactory results for small

gaps less than 20 ms long. Recent attempts to extend the

range of effective interpolation have used subband decompo-

sitions, in conjunction with non-optimal AR prediction [3]

and with neural network nonlinear prediction [4].

Subband interpolation raises the possibility of using other

classes of signal decomposition, such as demodulation. Many

nonstationary signals, natural or man-made, can be repre-

sented as sums of slowly-varying narrowband processes that
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modulate high-frequency carriers. Modulation analysis has

been used in source separation of music [5] and in speech

perception studies [6, 7]. Due to their slowly varying nature,

modulators are hypothetically easier to interpolate over long

gaps.

The rest of this paper is summarized as follows. Section

2 discusses a modulation signal model in terms of a uniform

filterbank. Section 3 then describes the process of demod-

ulating a signal containing a gap and individually repairing

each modulator and carrier. Section 4 presents experimental

results, followed by a discussion and concluding remarks in

Sections 5 and 6.

2. MODULATION SIGNAL MODEL

For natural signals with time-varying statistics, we assume a

signal model of the following form:

x(t) =
K−1∑
k=0

sk(t) =
K−1∑
k=0

mk(t)ck(t), (1)

which expresses x(t) as a sum of products between carriers

ck(t) and modulators mk(t). The only constraints on this

model are that each individual product sk(t) be bandlimited,

and that the carriers be unimodular. Carriers thus contain fine-

structure information, whereas modulators form correspond-

ing amplitude envelopes.

As with any product model, there is no unique decompo-

sition that satisfies (1) for a given signal x(t). Adopting the

methodology used by Atlas and Janssen [5], we first use a fil-

terbank to separate x(t) into subbands sk(t). Using the short-

time Fourier transform (STFT), the subbands of the sampled

signal x[n] are:

sk[n] =
∞∑

m=−∞
x[n + m]w[−m]e−j2πkm/K , (2)

where w[n] is a lowpass window of length K.

After the STFT filterbank, a carrier detection algorithm

determines, for each sk[n],

ck[n] = ejφk[n]. (3)
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Consequently,

mk[n] = sk[n] · c∗k[n], (4)

where * denotes complex conjugation. The purpose of de-

modulation, then, is to determine φk[n] for a subband sk[n].
Three such methods are considered in this paper, each of

which is discussed in the following sub-sections.

2.1. Constant Carrier Demodulation

The first demodulation method defines the carriers of an

arbitrary, sampled signal x[n] to be constant-frequency

tones spaced evenly around the unit circle. That is, for

k = {0, ..., K − 1},

ck[n] = exp
{

j2πkn

K

}
. (5)

This demodulation shifts each STFT subband of x[n] to

the baseband, essentially removing the fast angular rotation

of the phasors defined in (5). The drawback of this decom-

position is that, although reducing each subband to slowly-

varying envelope-like modulators, it relies on a set of carriers

that have no physical connection to the original signal.

2.2. Hilbert Demodulation

The second form of demodulation makes use of the analytic

subband, which is defined as the sum of a real subband and

its Hilbert transform. By virtue of the complex exponential

in (2), the STFT subbands sk[n] are approximately analytic

versions of real bandpass signals, with the exception being the

few subbands that span both negative and positive frequencies

near zero and the Nyquist rate. Ignoring these exceptions,

Hilbert demodulation is as follows:

mk[n] = |sk[n]|, φk[n] = � sk[n], (6)

where mk[n] is called the Hilbert envelope and φk[n] the

Hilbert instantaneous phase. In implementation, the relatively

few non-analytic subbands are either discarded completely or

left unmodified before and after interpolation.

2.3. Coherent Demodulation

Loughlin and Tacer have observed that the Hilbert decom-

position in (6) often yields physically meaningless quantities

such as non-bandlimited carriers and negative instantaneous

frequencies (IFs) [8]. They propose a more physically mean-

ingful instantaneous frequency definition based on the time-

varying spectral center-of-gravity (COG) of a signal, which

forms the basis for coherent demodulation in this work.

Given the power spectral density estimate of a windowed

segment from the kth subband centered at time t, the instan-

taneous frequency of that subband is defined as

ω̄k(t) =

∫ B2

B1
ωSk(ω, t)dω∫ B2

B1
Sk(ω, t)dω

, (7)

where [B1, B2] is the range of frequencies spanned by the

mainlobe of the kth subband. The carrier phase is then found

by integrating the IF, as in

φk(t) =
∫ t

−∞
ω̄k(τ)dτ. (8)

This carrier definition is similar to the monochromatic

carrier derived by Papoulis [9] in the context of a bandpass

wide-sense stationary process. In that case, the spectral COG

is optimal in the sense of minimizing the variance of the

derivative of the modulator, akin to a bandlimiting criterion.

3. INTERPOLATION

The three demodulation methods given in the previous section

are now used as front-end decompositions for gap interpo-

lation. Instead of applying an interpolation algorithm on

samples of the fullband signal x[n], the idea now is to recon-

struct mk[n] and ck[n] over samples that correspond to the

gap in x[n].
Consider the signal x[n] missing L samples in the con-

tiguous interval [n1, n2]. Taking into account the effects of

the subband transients at the gap edges, the filterbank extends

the gap to L + K − 1 samples, corresponding to the interval

[n1 − K/2, n2 + K/2], where K is the number of subbands

and also the length of the STFT subband impulse response.

The modulators mk[n] and carriers ck[n] therefore also con-

tain unknown samples in the interval [n1 − K/2, n2 + K/2].
The modulators are then reconstructed via some conven-

tional interpolation algorithm, using M samples on either

side of the gap, yielding m̂k[n]. In the case of the Hilbert

envelope, m̂k[n] is full-wave rectified to comply with the

definition of a non-negative magnitude value.

For constant-carrier modulation and coherent modula-

tion, bandlimited carriers imply that the modulators are also

bandlimited. Even the Hilbert modulators, although non-

bandlimited, are heavily concentrated at low frequencies. It

is therefore possible to downsample the modulators by a fac-

tor R depending on the bandwidth of the filterbank subbands.

Consequently, the downsampled gap length is (L+K−1)/R,

and M/R known samples are available on either side of the

gap. Downsampling is desirable because of the reduced

amount of computation needed for interpolation algorithms

that involve matrix inversion.

Carrier interpolation is decidedly simpler than modulator

interpolation. In the case of the constant-carriers method, the

carriers are fixed and thus require no repair, so ĉk[n] = ck[n].
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The Hilbert carriers, on the other hand, have non-bandlimited,

and even discontinuous, instantaneous frequencies. Such be-

havior hinders elaborate interpolation efforts, so instead we

fit a line to the first difference of the Hilbert phase φk[n],
and then exponentiate the cumulative sum to form ĉk[n]. In

the case of coherent demodulation, no explicit interpolation is

performed; instead, the length of the carrier detection window

is chosen to be longer than the gap, such that spectral COG

estimates can be made within the gap based on the M sam-

ples on either side. In this study, we set the carrier detection

window length to 2L.

After interpolating the modulators and carriers, the fi-

nal repaired signal y[n] is synthesized by applying the in-

verse STFT algorithm on the remodulated subbands ŝk[n] =
m̂k[n] · ĉk[n].

4. EXPERIMENT DESIGN AND RESULTS

The following experiment studies the results of modulation-

based gap interpolation. Four decompositions are compared:

1. full-band, or no demodulation (FB),

2. coherent demodulation (CM),

3. Hilbert demodulation (HM), and

4. constant-carrier demodulation (CC).

For this study, we use the iterative least-squares autoregres-

sive (AR) interpolator derived by Etter [2], which assumes an

underlying linear prediction model with a single parameter

(the AR order) and does not require additional assumptions

or constraints (e.g., bandwidth constraints, specified excita-

tion sequences). As described in Section 3, this interpolation

algorithm is applied to each modulator as given by the demod-

ulation methods listed above, except for FB, which applies the

interpolator directly to the full-band signal.

In practice, the least-squares optimality of the chosen in-

terpolator can be a drawback for long gaps. This is because

the conventional interpolator minimizes the AR prediction er-

ror over the gap, which tends to reduce the overall signal

power in the middle of long gaps [3]. Non-optimal algorithms

have been devised to counter this problem, but a simple post-

processing stage is used here instead. Specifically, the recon-

structed samples in the output signal y[n] are scaled by a ta-

pered window that maintains continuity at the gap edges while

boosting the amplitude in the middle of the gap. A window

satisfying these constraints is of the form h[n] = 1 + αg[n],
where g[n] is a Tukey window and α is a gain factor.

A meaningful yet quantitative measure of interpolation

quality is necessary for parameter selection and objective per-

formance comparisons. We use Bark Spectral Distortion [10],

which incorporates a simple auditory model to determine the

Euclidean distance between the two signals in a perceptual

space. Using this measure, a smaller BSD value corresponds

to less perceived distortion, with zero indicating no distortion.

The only parameter needed for FB interpolation is the AR

Table 1. Interpolation parameters obtained from BSD measures on

a classical music test signal.

tL (ms) 10 20 40 80 150 250

K 64 64 128 128 512 512

tM (ms) 80 80 80 80 500 500

order used to model the segments of data on either side of

the gap. Similar to the experiments conducted by Etter [2],

we found that one AR order, equivalent to an 80 ms model-

ing segment, performed the best for most gap lengths in a 16

KHz classical music test signal. For very long gaps (150 to

250 ms), however, a longer modeling interval closer to 500

ms was needed.

CM, HM, and CC interpolation require filterbank set-

tings in addition to a preset AR order. A Hamming window

was used for the STFT filterbank, with a downsampling factor

of R = K/8. Confining K to powers of two, the best K was

found to scale with the gap size, with low BSD scores tending

to cluster around smaller K. Similar results were found be-

tween the three decompositions, so a common sequence of K
values was chosen for all methods. A summary of the best in-

terpolation parameters for classical music recorded at 16 KHz

is given in Table 1, where tL is the time duration of the gap

and tM = M/fs is the time duration equivalent to the AR

order.

The parameters in Table 1 were used to interpolate gaps

in four test signals: classical music at 16 KHz (the same used

when choosing the parameters), speech at 16 KHz, a flute and

bass duet at 44.1 KHz, and a jazz ensemble at 44.1 KHz. For

the 44.1 KHz signals, the number of subbands used was 3K.

In each test signal, 11 gaps of constant duration were dis-

tributed evenly throughout a 13-second interval. Then, the

average BSD was calculated for each signal after interpolat-

ing all eleven gaps. This was repeated for different gap sizes

ranging from 10 ms to 500 ms. To repair the 500 ms gaps,

the values in Table 1 were extrapolated to K = 1024 and tM
= 500 ms. Quantitative results appear in Figure 1, which dis-

plays the improvement in BSD for each decomposition (i.e.,

the BSD improvement is the log BSD of the corrupted signal

minus the log BSD of the repaired signal).

5. DISCUSSION

The most striking observation from Figure 1 is that the FB

curves end prematurely at 250 ms for 16 KHz signals and

at 80 ms for 44.1 KHz signals. Since the conventional in-

terpolator in [2] requires the inversion of an L × L matrix,

interpolation becomes infeasible, even in non-real-time and

on a modern Pentium-class PC, for large gaps using FB inter-

polation. This is not a problem, however, when interpolating

the downsampled modulators in either of the CM, HM, or CC

methods.

For the same reason, run-time is greatly shortened using
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Fig. 1. Improvement in average BSD relative to the corrupted sig-

nal, for music and speech in two sampling rates. The vertical dotted

lines indicate the maximum gap size for which FB interpolation is

still feasible.

CM, HM, or CC interpolation. Although the filterbank cre-

ates a multitude of K interpolations, each interpolation deals

with a gap that is reduced in length by a factor of K/8. The

complexity of repairing an L-length gap is O(L3), whereas

repairing K modulators requires on the order of 83L3/K2

operations. Given the values of K in Table 1, the latter repre-

sents a significant decrease in arithmetic operations compared

to FB interpolation.

According to the BSD measure, FB interpolation consis-

tently performs the best for small gaps between 10 and 40

ms. This is partly explained by the disproportionate increase

in gap size due to the filterbank stage, which extends the gap

length to L + K − 1 samples. For larger gaps, however, CM

and CC interpolation yield almost equivalent signal quality

compared to FB interpolation. HM interpolation suffers no-

ticeably in the classical and flute/bass test signals. A possible

cause for this disparity is the fact that the Hilbert modula-

tors are magnitude signals with sharp inflections at the zero-

crossings, and are therefore poorly modeled as stationary AR

processes.

It is interesting to note that the speech test signal exhibits

far less signal improvement for large gaps when compared

to the music signals. This suggests two possible explana-

tions: that the chosen interpolation parameters are incompat-

ible with speech signals, or that speech is inherently less sta-

tionary and thus more difficult to interpolate over long gaps.

6. CONCLUSION

Using a least-squares AR-based interpolator, a modulation

decomposition is clearly beneficial in terms of computational

complexity, especially for long gaps. In terms of quality, a

perceptually-motivated distortion measure shows that stan-

dard full-band interpolation performs the best for small gaps.

However, interpolations of the full-band signal, constant-

carrier modulators, and coherent modulators give similar

results for gaps longer than about 80 ms. A remaining ques-

tion, to be investigated via listener testing, is whether BSD

accurately reflects changes in modulation as perceived by

human listeners. Also, we have reason to suspect that the

filterbank structure described in Section 2 imposes a possibly

substantial bias on carrier detection, which could result in

errors in demodulation and in subsequent gap interpolation.

This matter is currently the topic of ongoing research.
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