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ABSTRACT 
 
A new algorithm for coefficient update of the Lagrange 
fractional delay FIR filter is proposed, which reduces the 
computational complexity dramatically. It is based on 
rearranging the polynomial terms of the Lagrange 
interpolation formula and computing the common 
product terms only once. Reordering the Lagrange 
interpolation formula yields two other methods for 
updating the coefficients, the direct and the division-
based methods. The division-based method uses only one 
division per coefficient. The two latter methods reduce 
the computational load, although they are not as efficient 
as the new algorithm. Finally, the superiority of the direct 
form FIR implementation of the Lagrange fractional 
delay filter and the new coefficient update method over 
other existing methods is demonstrated in an audio signal 
processing application. 
 

Index Terms—Acoustic signal processing, delay 
filters, FIR digital filters, interpolation, polynomials 
 

1. INTRODUCTION 
 
The Lagrange fractional delay (FD) filter is one type of 
variable fractional delay digital filter, which can be 
applied as a band-limited interpolator for sampling rate 
conversion and fine-tuning the sampling instances. These 
operations are used in a vast range of applications, such 
as synchronization in digital communications, music 
synthesis [1, 2], and sound reproduction based on wave 
field synthesis [3]. 

A direct form FIR filter structure can be used to 
implement the Lagrange interpolation. It is well known 
that the coefficients of an Mth-order Lagrange FD filter 
are obtained from 
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where D is a real number representing the delay from the 
beginning of the impulse response (n = 0) [1]. Being 
dependent on the fractional delay, the coefficients of the 
Lagrange FD filter have to be updated as the delay 

changes. Coefficient update becomes demanding if the 
fractional delay changes frequently. 

Different methods have been developed to reduce the 
computational complexity of the Lagrange filtering 
process. One approach is to implement the Lagrange 
filter using the Farrow structure or modified Farrow 
structures [2, 4, 5, 6]. An alternative to the Farrow 
structure was presented in [7, 8], which is based on the 
discrete time Taylor series expansion.  

In this paper, a new algorithm for updating the 
coefficients of the Lagrange FD FIR filter is presented. 
This algorithm automates the rearrangement of the 
polynomial terms and computes the common product 
terms of the coefficients once, thus reducing the 
computational load. Another efficient scheme for the 
calculation of the coefficients of the Lagrange 
interpolator was proposed in [9].  

Two other techniques for coefficient update of the 
Lagrange FD filter are discussed in this paper. The 
simplest technique is to directly use the Lagrange 
interpolation formula with a slight manipulation. Also, a 
division-based method is introduced in which all the 
polynomial terms are multiplied first. Then, each 
coefficient is obtained by one division. The three 
mentioned methods are compared in terms of the number 
of additions and multiplications.  

This paper is structured as follows. Section 2 
describes different methods for updating the coefficients 
of the Lagrange FD FIR filter. Section 3 compares the 
presented methods. In Section 4, the advantage of the 
direct form FIR implementation of the Lagrange 
interpolation over other implementation methods is 
discussed in an example application. Finally, Section 5 
concludes this paper. 
 

2. COEFFICIENT UPDATE TECHNIQUES 
 

In this section, three methods for updating the 
coefficients of the Lagrange FD FIR filter are presented. 
 
2.1. Direct Method 
 

37371-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



A straightforward technique to calculate the coefficients 
of the Lagrange FD filter is to use the closed-form 
formula [2]. According to (1), the computation of each 
coefficient of an Mth-order Lagrange filter requires 2M 
additions, M – 1 multiplications, and M divisions. To 
compute all the coefficients, the computational load 
increases M + 1 times, resulting in 2M(M + 1) additions, 
(M + 1)(M – 1) multiplications, and M(M + 1) divisions. 

A slight manipulation of the Lagrange interpolation 
formula leads to the reduction of the computational cost 
and eliminates the need for the division operation. 
Equation (1) can be reordered as 
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Constants Cn are independent of the fractional delay D. 
Hence, they can be calculated once when the filter order 
is determined and are used during the whole process. 

Additionally, the terms (D – k) are used repeatedly in 
the computation of the coefficients. Therefore, it is 
reasonable to compute them once when the fractional 
delay changes instead of M + 1 times for every 
coefficient. This way the computational load reduces to M 
additions and M(M + 1) multiplications. This is called the 
direct method for updating the coefficients. 
 
2.2. Division-Based Method 
 
Another approach to update the coefficients of the 
Lagrange FD filter is to use the division technique by 
representing the Lagrange formula as below: 
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Using the above formula, it is sufficient to multiply all 
the terms (D – k) once and, then, divide the common 
term by (D – n) for every coefficient. In this method, M 
additions, 2M + 1 multiplications, and M + 1 divisions 
are required to compute the coefficients. 

Many division algorithms have been developed so far 
[10, 11, 12]. The taxonomy of division algorithms along 
with their impact on system design is presented in [11]. 
Recently, a fast fixed-point division algorithm was 
introduced in [12], which uses the Newton-Raphson 
method to perform division. In this method, a 16-bit 
fixed-point division is performed by 4 multiplications and 
3 additions with a precision of 13 bits. This precision is 
acceptable for many applications using Lagrange FD 
filters. However, a higher accuracy can be obtained using 
a more precise division algorithm [11]. 

Using the Newton-Raphson method for the division 
algorithm, updating the coefficients of the Lagrange filter 
requires 4M + 1 additions and 6M + 5 multiplications. 

Algorithm L (Updating the coefficients of the Lagrange FD 
filter). Given the order of the Lagrange FD filter M and the 
fractional delay D, this algorithm evaluates the coefficients of 
the Lagrange FD filter h(n) according to equation (2). 
L1. Initialization: 

1. Set j = 0. 
2. Compute the xi = D – i terms for i = 0, 1,…, M. 
3. If M is odd Lj = M + 1, else Lj = M + 2. 
4. Set all the values of array aj of length Lj equal to 1. 
5. Fill M + 1 first elements of the array aj by xi s. 
6. Rearrange the elements of array aj in such a way that 

every other element is swapped with its following 
element in the array. (see Fig. 2) 

L2. Iteration: Do the following steps while Lj > 2:  
1. Let Lj + 1 = Lj/2. 
2. If Lj + 1 is odd, Lj + 1 = Lj + 1. 
3. Set all the values of the array aj + 1 of length Lj + 1 

equal to 1. 
4. Multiply every other element of the array aj by its 

next element and fill the array aj + 1 by the results. 
5. j = j + 1. 

L3. Iteration: Do the following steps while j > 0: 
1. j = j – 1. 
2. NIter = (L0/2

j) – 1. 
3. Iteration: k = 0 to NIter: aj(k) = aj + 1([k/2]) aj(k) 

L4. Iteration: k = 0 to M + 1 
1. 1. h(k) = a0(k) C(k) 

Fig. 1. New polynomial rearrangement algorithm. 
 

2.3. New Polynomial Rearrangement Algorithm  
 
The coefficients of a Lagrange FD filter of order M are 
Mth-order polynomials in D. Every two coefficients share 
M – 1 terms which are of the form (D – i). Therefore, an 
efficient way to update the coefficients of the Lagrange 
FD filter is to calculate the common polynomial terms 
only once so that the overall computation is reduced. In 
Fig. 1, a new algorithm is introduced in which common 
terms are multiplied step by step to yield the coefficients. 

A demonstration of the new polynomial 
rearrangement algorithm for a filter order M = 6 is shown 
in Fig. 2. The first step is to compute all the polynomial 
terms and put them in array a0. The length of the array is 
selected to be L0 = 6 + 2 = 8. The elements of the array 
are rearranged such that every other element is swapped 
with its following element. This is shown by crossed 
arrows in Fig. 2 (step L1). Note that the sixth element is 
set to 1. Indeed, at every stage of the algorithm any extra 
element of the array is set to 1. 

Starting from the second step, the elements of the 
previous array are multiplied pair wise. The results 
constitute a new array whose elements are rearranged the 
same way as the first array in stage L1. For example, the 
result of the multiplication of the first two elements of the 
first array x0x1 will constitute the second element of the 
second array. This procedure continues until a two-
element array remains (step L2). Therefore, this results in 
three arrays a0 = {x1, x0, x3, x2, x5, x4, 1, x6}, a1 = {x2x3, 
x0x1, x6, x4x5}, and a2 = { x4x5x6, x0x1x2x3}.  
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Fig 2. Block diagram of the novel polynomial rearrangement 
algorithm for filter order M = 6. Labels L1 to L4 refer to Fig. 1. 
 

At this point, the algorithm takes a reverse path 
starting from the last array, i.e., a2. Every element of the 
array is multiplied by two elements of the previous array. 
For instance, the first element of the array a2 is multiplied 
by the first and second elements of the array a1 and 
replaces them. Likewise, the second element of the array 
a2 is multiplied by the third and fourth elements of the 
array a1 and substitutes them (step L3). The array a1 will, 
then, change to a1 = {x2x3x4x5x6x7, x0x1x4x5x6x7, 
x0x1x2x3x6x7, x0x1x2x3x4x5}. This procedure is repeated for 
all arrays starting from a2 until the array a0, that is, the 
first array. 

The last stage of the algorithm is to multiply the fixed 
coefficients Cn by the elements of array a0 to yield the 
coefficients h(n) of the Lagrange FD filter for the given 
fractional delay D (step L4). Using this algorithm, a 6th-
order Lagrange filter requires 6 additions and 22 
multiplications to update the coefficients. The number of 
additions and multiplications required in this algorithm is 
M and 4M – 2, respectively, for an Mth-order filter. 
 

3.  COMPARISON OF METHODS 
 
The computational costs of the methods mentioned above 
to update the coefficients of the Lagrange FD filter are 
compared in Fig. 3. Figure 3 (a) shows the number of 
multiplications required by each of the methods as a 
function of filter order. It can be seen clearly that as the 
order of the filter increases, the number of multiplications 
rockets up using the direct method. This is because the 
number of multiplications increases as O(M2). However, 
the order of increase for the division-based method and 
the polynomial rearrangement algorithm is O(M), as the 
plots indicate. Figure 3 (a) also shows that the number of 
multiplications in the new rearrangement algorithm 
always remains below that of the direct and division 
methods. 

Fig. 3 (b) indicates the number of additions for 
different filter orders. The number of additions in the 
direct form and the rearrangement algorithm are both 
equal to the filter order M. For the division-based 
method, the increase in the number of additions is faster 
than the two other cases. 
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Fig. 3. Comparison of the computational cost of coefficient 
update. 
 

The number of operations for three different filter 
orders M = 10, 20, and 50 using the direct method, the 
division-based method, and the rearrangement algorithm 
are compared in Table 1. As can be seen, the division-
based method reduces the computational cost compared to 
the direct method. However, the proposed polynomial 
rearrangement algorithm requires the least number of 
multiplications and additions to update the coefficients of 
the Lagrange FD FIR filter compared with the other 
methods. 

 
Table 1. Comparison of the computational cost for M = 10, 20, 
and 50. Number of multiplications (Mul), additions (Add), and 
total number of operations (Tot) are shown. The smallest total 
number of operations is underlined in each case. 
 

 
4. DISCUSSION 

 
Besides the direct form FIR filtering structure to 
implement the Lagrange FD filter, two general methods 
can be found in the literature. One of them is the Farrow 
structure [4] in which the Lagrange filter can be 
restructured to M + 1 filters with constant coefficients 
and M variable multipliers D. The computational cost to 
compute every output sample of the Farrow structure is 
M2 + M multiplications and M2 additions. The Farrow 
structure can be modified such that its computational 
complexity is reduced [2, 5, 6]. One of the modifications 
was proposed in [5], which results in fewer 
multiplications, i.e., M(M + 1)/2 multiplications. The 
second filtering structure for the Lagrange FD filter was 
proposed in [7, 8]. This structure, which the authors of 
this paper call the Taylor structure, decreases the 

M = 10 M = 20 M = 50  
Mul Add Tot Mul Add Tot Mul Add Tot 

Direct 
Method 

110 10 120 420 20 440 2550 50 2600 

Division  
Method 

65 41 106 125 81 206 305 201 506 

Rearran-
gement 

38 10 48 78 20 98 198 50 248 
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computational complexity to 3M – 2 additions and 3M – 
1 multiplications per output sample for an Mth-order 
Lagrange FD filter. 

If a direct form FIR filtering structure is used, M + 1 
multiplications and M additions should be added to the 
computational cost of updating the coefficients due to the 
filtering process. The supremacy of the direct form FIR 
filtering structure becomes apparent in the applications 
for which the fractional delay does not change very often, 
such as sound synthesis. While the Farrow or Taylor 
methods continuously update the filtering structure, in the 
direct form FIR implementation the coefficients are 
updated only when the fractional delay changes. For 
example, in audio applications the control rate is around 
100 Hz. Therefore, with a sampling frequency of 48 kHz, 
the fractional delay may change, requiring coefficient 
update, every 480 samples. In Fig. 4, the average 
computational cost of the three mentioned methods over 
an interval of 10 ms with a sampling frequency of 48 kHz 
is shown as a function of filter order M. As can be seen, 
the direct form FIR implementation of Lagrange 
interpolation using the new rearrangement algorithm is 
more efficient than the other techniques. 
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Fig. 4. Average computational cost over a time interval of 0.01 
seconds with a sampling frequency of 48 kHz for different 
methods of implementing Lagrange FD filter. 
 

Another advantage of the proposed algorithm is that it 
can be used for updating the coefficients of the truncated 
Lagrange FD filter, which was introduced recently [13]. 
The truncated Lagrange FD filter cannot be implemented 
using the Taylor structure.  

 
5. CONCLUSION 

 
A new algorithm for computationally efficient coefficient 
update of the Lagrange FD FIR filter was presented. The 
direct form FIR structure is the most efficient form for the 
implementation of the Lagrange FD filter in audio signal 
processing applications, such as music synthesis and 
wave-field synthesis, since the fractional delay does not 
change at every sampling interval. The proposed 
rearrangement algorithm requires a smaller number of 
operations compared to other coefficient update 
techniques, like the direct and the division-based 
methods.   
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