1-4244-1484-9/08/$25.00 ©2008 IEEE

A COMPUTATIONALLY EFFICIENT COEFFICIENT UPDATE
TECHNIQUE FOR LAGRANGE FRACTIONAL DELAY FILTERS

Azadeh Haghparast and Vesa Vilimdki

Helsinki University of Technology (TKK)
Department of Signal Processing and Acoustics
P.O. Box 3000, FI-02015 TKK, Espoo, Finland

E-mails: azadeh.haghparast @tkk.fi, vesa.valimaki@tkKk.fi

ABSTRACT

A new algorithm for coefficient update of the Lagrange
fractional delay FIR filter is proposed, which reduces the
computational complexity dramatically. It is based on
rearranging the polynomial terms of the Lagrange
interpolation formula and computing the common
product terms only once. Reordering the Lagrange
interpolation formula yields two other methods for
updating the coefficients, the direct and the division-
based methods. The division-based method uses only one
division per coefficient. The two latter methods reduce
the computational load, although they are not as efficient
as the new algorithm. Finally, the superiority of the direct
form FIR implementation of the Lagrange fractional
delay filter and the new coefficient update method over
other existing methods is demonstrated in an audio signal
processing application.

Index Terms—Acoustic signal processing, delay
filters, FIR digital filters, interpolation, polynomials

1. INTRODUCTION

The Lagrange fractional delay (FD) filter is one type of
variable fractional delay digital filter, which can be
applied as a band-limited interpolator for sampling rate
conversion and fine-tuning the sampling instances. These
operations are used in a vast range of applications, such
as synchronization in digital communications, music
synthesis [1, 2], and sound reproduction based on wave
field synthesis [3].

A direct form FIR filter structure can be used to
implement the Lagrange interpolation. It is well known
that the coefficients of an Mth-order Lagrange FD filter
are obtained from

h(n,D):ﬁD_k,forn:O,l,Z,...,M , (1)
o h—k
k#n
where D is a real number representing the delay from the
beginning of the impulse response (n = 0) [1]. Being
dependent on the fractional delay, the coefficients of the
Lagrange FD filter have to be updated as the delay

3737

changes. Coefficient update becomes demanding if the
fractional delay changes frequently.

Different methods have been developed to reduce the
computational complexity of the Lagrange filtering
process. One approach is to implement the Lagrange
filter using the Farrow structure or modified Farrow
structures [2, 4, 5, 6]. An alternative to the Farrow
structure was presented in [7, 8], which is based on the
discrete time Taylor series expansion.

In this paper, a new algorithm for updating the
coefficients of the Lagrange FD FIR filter is presented.
This algorithm automates the rearrangement of the
polynomial terms and computes the common product
terms of the coefficients once, thus reducing the
computational load. Another efficient scheme for the
calculation of the coefficients of the Lagrange
interpolator was proposed in [9].

Two other techniques for coefficient update of the
Lagrange FD filter are discussed in this paper. The
simplest technique is to directly use the Lagrange
interpolation formula with a slight manipulation. Also, a
division-based method is introduced in which all the
polynomial terms are multiplied first. Then, each
coefficient is obtained by one division. The three
mentioned methods are compared in terms of the number
of additions and multiplications.

This paper is structured as follows. Section 2
describes different methods for updating the coefficients
of the Lagrange FD FIR filter. Section 3 compares the
presented methods. In Section 4, the advantage of the
direct form FIR implementation of the Lagrange
interpolation over other implementation methods is
discussed in an example application. Finally, Section 5
concludes this paper.

2. COEFFICIENT UPDATE TECHNIQUES

In this section, three methods for updating the
coefficients of the Lagrange FD FIR filter are presented.

2.1. Direct Method

ICASSP 2008

A straightforward technique to calculate the coefficients
of the Lagrange FD filter is to use the closed-form
formula [2]. According to (1), the computation of each
coefficient of an Mth-order Lagrange filter requires 2M
additions, M — 1 multiplications, and M divisions. To
compute all the coefficients, the computational load
increases M + 1 times, resulting in 2M(M + 1) additions,
(M + 1)(M — 1) multiplications, and M(M + 1) divisions.

A slight manipulation of the Lagrange interpolation
formula leads to the reduction of the computational cost
and eliminates the need for the division operation.
Equation (1) can be reordered as

M
h(n.D)=C,[[(D~k).forn=0,1,2,..M, (2)
ko
where
I1
C, =

,forn=0,1,2,... M. 3)

Constants C, are independent of the fractional delay D.
Hence, they can be calculated once when the filter order
is determined and are used during the whole process.

Additionally, the terms (D — k) are used repeatedly in
the computation of the coefficients. Therefore, it is
reasonable to compute them once when the fractional
delay changes instead of M + 1 times for every
coefficient. This way the computational load reduces to M
additions and M(M + 1) multiplications. This is called the
direct method for updating the coefficients.

2.2. Division-Based Method

Another approach to update the coefficients of the
Lagrange FD filter is to use the division technique by

representing the Lagrange formula as below:
M

[Tk

h(n,D)=C,2>—
(n,D)=C, D

,forn=0,1,2,...,.M. (@]

Using the above formula, it is sufficient to multiply all
the terms (D — k) once and, then, divide the common
term by (D — n) for every coefficient. In this method, M
additions, 2M + 1 multiplications, and M + 1 divisions
are required to compute the coefficients.

Many division algorithms have been developed so far
[10, 11, 12]. The taxonomy of division algorithms along
with their impact on system design is presented in [11].
Recently, a fast fixed-point division algorithm was
introduced in [12], which uses the Newton-Raphson
method to perform division. In this method, a 16-bit
fixed-point division is performed by 4 multiplications and
3 additions with a precision of 13 bits. This precision is
acceptable for many applications using Lagrange FD
filters. However, a higher accuracy can be obtained using
a more precise division algorithm [11].

Using the Newton-Raphson method for the division
algorithm, updating the coefficients of the Lagrange filter
requires 4M + 1 additions and 6M + 5 multiplications.

Algorithm L (Updating the coefficients of the Lagrange FD
filter). Given the order of the Lagrange FD filter M and the
fractional delay D, this algorithm evaluates the coefficients of
the Lagrange FD filter i(n) according to equation (2).
L1. Initialization:

1. Setj=0.
Compute the x; =D —i terms for i =0, 1,..., M.
IfMisodd Li=M + 1, else L;=M + 2.
Set all the values of array a; of length L; equal to 1.
Fill M + 1 first elements of the array a; by x; s.
Rearrange the elements of array g; in such a way that
every other element is swapped with its following
element in the array. (see Fig. 2)
L2. Iteration: Do the following steps while L; > 2:

1. LetL,~+1 :L/Z.

2. Ifo+1iSOdd,Lj+1=Lj+1.

3. Set all the values of the array a; . | of length L; ,

equal to 1.
4. Multiply every other element of the array a; by its
next element and fill the array a; .| by the results.

5. j=j+1
L3. Iteration: Do the following steps while j > 0:

1. j=j-1

2. Nie=(Lo/2)- 1.

3. Iteration: k = 0 to Nier: aj(k) = aj+ 1([k/2]) aj(k)
L4. Iteration: k=0 to M + 1

1. 1. hk) = ao(k) C(k)

AR N

Fig. 1. New polynomial rearrangement algorithm.
2.3. New Polynomial Rearrangement Algorithm

The coefficients of a Lagrange FD filter of order M are
Mth-order polynomials in D. Every two coefficients share
M — 1 terms which are of the form (D — i). Therefore, an
efficient way to update the coefficients of the Lagrange
FD filter is to calculate the common polynomial terms
only once so that the overall computation is reduced. In
Fig. 1, a new algorithm is introduced in which common
terms are multiplied step by step to yield the coefficients.

A demonstration of the new polynomial
rearrangement algorithm for a filter order M = 6 is shown
in Fig. 2. The first step is to compute all the polynomial
terms and put them in array ay. The length of the array is
selected to be Ly = 6 + 2 = 8. The elements of the array
are rearranged such that every other element is swapped
with its following element. This is shown by crossed
arrows in Fig. 2 (step L1). Note that the sixth element is
set to 1. Indeed, at every stage of the algorithm any extra
element of the array is set to 1.

Starting from the second step, the elements of the
previous array are multiplied pair wise. The results
constitute a new array whose elements are rearranged the
same way as the first array in stage L1. For example, the
result of the multiplication of the first two elements of the
first array xox; will constitute the second element of the
second array. This procedure continues until a two-
element array remains (step L2). Therefore, this results in
three arrays ap = {x, Xo, X3, X2, X5, X4, 1, X}, a1 = {x0%3,
XoX1, X6, X4X5}, and ap = { X4Xs5Xg, XoX1X2X3).

3738

L1 L2 L3 L4
T] T = C
X, =D Iy X1 X5 X3 X4 X5 Xe —CO’ h(0)
Nl o[XX, x5 X xC i
x,=D-1 Il B XoXo X3 X4 X5 Xe ~C. oy
<] :‘* X0 X XXy X5 Xe | —2> 1(2)
> XX, X4 X5Xg C,
< [, X, 2, X, X5 X | —3» h(3)
2 <C
x,=D-4 ol - X0 X126 X3 Xs X | —= h(4)
_ =l =] KoXiXaXaXe xCs
xs=D-5 L o X1 X X3 X4 Xe ~Cc h(5)
xg=D-6 ? < XX, X, X5 X, X5 | —E> 1(6)
>< sl = [[XoXiXaXsXaXs
X; = =
vy Y v
Ay a4 4y a4 4y

Fig 2. Block diagram of the novel polynomial rearrangement
algorithm for filter order M = 6. Labels L1 to L4 refer to Fig. 1.

At this point, the algorithm takes a reverse path
starting from the last array, i.e., a,. Every element of the
array is multiplied by two elements of the previous array.
For instance, the first element of the array a, is multiplied
by the first and second elements of the array a; and
replaces them. Likewise, the second element of the array
a, is multiplied by the third and fourth elements of the
array a; and substitutes them (step L3). The array a; will,
then, change to a; = {Xx2X3X4X5X6X7, X0X1X4X5X6X7,
X0X1X2X3X6X7, XoX1X2X3X4Xs}. This procedure is repeated for
all arrays starting from a, until the array ao, that is, the
first array.

The last stage of the algorithm is to multiply the fixed
coefficients C, by the elements of array ao to yield the
coefficients h(n) of the Lagrange FD filter for the given
fractional delay D (step L4). Using this algorithm, a 6™-
order Lagrange filter requires 6 additions and 22
multiplications to update the coefficients. The number of
additions and multiplications required in this algorithm is
M and 4M - 2, respectively, for an Mth-order filter.

3. COMPARISON OF METHODS

The computational costs of the methods mentioned above
to update the coefficients of the Lagrange FD filter are
compared in Fig. 3. Figure 3 (a) shows the number of
multiplications required by each of the methods as a
function of filter order. It can be seen clearly that as the
order of the filter increases, the number of multiplications
rockets up using the direct method. This is because the
number of multiplications increases as O(Mz). However,
the order of increase for the division-based method and
the polynomial rearrangement algorithm is O(M), as the
plots indicate. Figure 3 (a) also shows that the number of
multiplications in the new rearrangement algorithm
always remains below that of the direct and division
methods.

Fig. 3 (b) indicates the number of additions for
different filter orders. The number of additions in the
direct form and the rearrangement algorithm are both
equal to the filter order M. For the division-based
method, the increase in the number of additions is faster
than the two other cases.

£ (a)

é 450 [0 Direct Method Lo °
§ | |---Division Method °

= 300 -

> —Rearrangement Method| 0 ©

S 150F

2

E

=

Z

Z (b)

5 T

.S 4501

Z

=

< 3001

S

=]

5150

E
= N T bt et g

Z Eres .

8 12

Filter Order (M)
Fig. 3. Comparison of the computational cost of coefficient
update.

The number of operations for three different filter
orders M = 10, 20, and 50 using the direct method, the
division-based method, and the rearrangement algorithm
are compared in Table 1. As can be seen, the division-
based method reduces the computational cost compared to
the direct method. However, the proposed polynomial
rearrangement algorithm requires the least number of
multiplications and additions to update the coefficients of
the Lagrange FD FIR filter compared with the other
methods.

Table 1. Comparison of the computational cost for M = 10, 20,
and 50. Number of multiplications (Mul), additions (Add), and
total number of operations (Tot) are shown. The smallest total
number of operations is underlined in each case.

M=10 M =20 M =50

Mul |Add | Tot |Mul |Add |Tot | Mul |Add | Tot
Direct 110 | 10 |120 |420 (20 (440 |2550| 50 {2600
Method
Division | 65 | 41 |106 |125 |81 |206 | 305 |201 | 506
Method
Rearran- | 38 | 10 | 48 |78 |20 |98 | 198 | 50 |248
gement

4. DISCUSSION

Besides the direct form FIR filtering structure to
implement the Lagrange FD filter, two general methods
can be found in the literature. One of them is the Farrow
structure [4] in which the Lagrange filter can be
restructured to M + 1 filters with constant coefficients
and M variable multipliers D. The computational cost to
compute every output sample of the Farrow structure is
M* + M multiplications and M* additions. The Farrow
structure can be modified such that its computational
complexity is reduced [2, 5, 6]. One of the modifications
was proposed in [5], which results in fewer
multiplications, i.e., M(M + 1)/2 multiplications. The
second filtering structure for the Lagrange FD filter was
proposed in [7, 8]. This structure, which the authors of
this paper call the Taylor structure, decreases the

3739

computational complexity to 3M — 2 additions and 3M —
1 multiplications per output sample for an Mth-order
Lagrange FD filter.

If a direct form FIR filtering structure is used, M + 1
multiplications and M additions should be added to the
computational cost of updating the coefficients due to the
filtering process. The supremacy of the direct form FIR
filtering structure becomes apparent in the applications
for which the fractional delay does not change very often,
such as sound synthesis. While the Farrow or Taylor
methods continuously update the filtering structure, in the
direct form FIR implementation the coefficients are
updated only when the fractional delay changes. For
example, in audio applications the control rate is around
100 Hz. Therefore, with a sampling frequency of 48 kHz,
the fractional delay may change, requiring coefficient
update, every 480 samples. In Fig. 4, the average
computational cost of the three mentioned methods over
an interval of 10 ms with a sampling frequency of 48 kHz
is shown as a function of filter order M. As can be seen,
the direct form FIR implementation of Lagrange
interpolation using the new rearrangement algorithm is
more efficient than the other techniques.

x 10° ‘
—Rearrangement Algorithm
[|- Modified Farrow Structure
| |---Taylor Structure

~

)

—_
T

fpzIliiiaan--

=
W

Average Computational Cost
)

10 5 20 25
Filter Order

Fig. 4. Average computational cost over a time interval of 0.01
seconds with a sampling frequency of 48 kHz for different
methods of implementing Lagrange FD filter.

Another advantage of the proposed algorithm is that it
can be used for updating the coefficients of the truncated
Lagrange FD filter, which was introduced recently [13].
The truncated Lagrange FD filter cannot be implemented
using the Taylor structure.

5. CONCLUSION

A new algorithm for computationally efficient coefficient
update of the Lagrange FD FIR filter was presented. The
direct form FIR structure is the most efficient form for the
implementation of the Lagrange FD filter in audio signal
processing applications, such as music synthesis and
wave-field synthesis, since the fractional delay does not
change at every sampling interval. The proposed
rearrangement algorithm requires a smaller number of

operations compared to other coefficient update
techniques, like the direct and the division-based
methods.

6. ACKNOWLEDGMENT

This work has been supported by the Foundation of
Technology (TES). Special thanks go to Dr. Balazs Bank
and Mr. David Yeh for their useful comments on this
work.

7. REFERENCES

[1] T. I Laakso, V. Viliméki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay — Tools for fractional delay filter
design,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30-60,
Jan. 1996.

[2] V. Vilimiki, Discrete-Time Modeling of Acoustic Tubes
Using Fractional Delay Filters, Doctoral thesis, Lab. of
Acoustics and Audio Signal Processing, TKK, Espoo, Finland,
Dec. 1995.

[3] A. Franck, A. Grife, T. Korn, and M. Straup, “Reproduction
of moving sound sources by wave field synthesis: an analysis of
artifacts,” in Proc. AES 32" Int. Conf., pp. 188-196,
Copenhagen, Denmark, Sept. 2007.

[4] C. W. Farrow, “A continuously variable digital delay
element,” in Proc. IEEE Int. Symp. Circ. Sys., vol. 3, pp. 2641-
2645, Espoo, Finland, Jun. 1988.

[5] J. Vesma and T. Saramiki, “Optimization and efficient
implementation of FIR filters with adjustable fractional delay,”
in Proc. IEEE Int. Symp. Circ. Sys., vol. 4, pp. 2256-2259,
Hong Kong, Jun. 1997.

[6] T.-B. Deng, “Coefficient-symmetries for implementing
arbitrary-order Lagrange-type variable fractional-delay digital
filters,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4078-
4090, Aug. 2007.

[7] S. Tassart and P. Depalle, “Analytical approximations of
fractional delays: Lagrange interpolators and allpass filters,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1,
pp. 455-458, Apr. 1997.

[8] C. Candan, “An efficient filtering structure for Lagrange
interpolation,” IEEE Signal Process. Letters, vol. 14, no. 1, pp.
17-19, Jan. 2007.

[9] P. Murphy, A. Krukowski, and A. Tarczynski, “An efficient
fractional sample delayer for digital beam steering,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., vol. 3, p. 2245-
2248, Apr. 1997.

[10] D. A. Patterson and J. L. Hennessy, “Arithmetic for
computers” in Computer Organization & Design, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[11] S. F. Oberman and M. J. Flynn, “Division algorithms and
implementations,” IEEE Trans. Computers, vol. 46, no. 8, pp.
833-854, Aug. 1997.

[12] N. M. Nenadic and S. B. Mladenovic, “Fast division on
fixed-point DSP processors using Newton-Raphson method,” in
Proc. of the Int. Conf. on Computer as a Tool, EUROCON
2005, vol. 1, pp. 705-708, Belgrade, Nov. 2005.

[13] V. Vilimiki and A. Haghparast, “Fractional filter design
based on truncated Lagrange interpolation,” IEEE Signal
Process. Letters, vol. 14, no. 11, pp. 816-819, Nov. 2007.

3740

